Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 4, 2011

Water moss as a food item of the zoobenthos in the Yenisei River

  • Galina Kalachova EMAIL logo , Michail Gladyshev , Nadezhda Sushchik and Olesia Makhutova
From the journal Open Life Sciences

Abstract

Bryophytes are abundant in streams and are a habitat for many invertebrates, but their contribution to the diet of fluvial zoobenthos is still debated. To estimate the amount of bryophyte-derived organic matter assimilated by benthic invertebrates, we used a combination of fatty acid and stable isotope analyses during a four-year monthly study of a littoral site in the Yenisei River (Siberia, Russia). Acetylenic acids, which are highly specific biomarkers of the water moss Fontinalis antipyretica, were found in lipids of all dominant benthic animals: gammarids, ephemeropterans, chironomids and trichopterans. The dominant zoobenthic species, Eulimnogammarus viridis, had maximum levels of the biomarkers in its biomass during winter, and minimum levels in summer. The zoobenthos in the studied site regularly consume and assimilate bryophyte-derived organic matter as a minor supplemental food. This consumption increases in winter, when the main food source of the zoobenthos, epilithic biofilms, are probably scarce.

[1] Bowden W. B., Arscott D., Pappathanasi D., Finlay J., Glime J.M., Lacroix J., et al., Roles of bryophytes in stream ecosystems, J. N. Am. Benthol. Soc., 1999, 18, 151–184 http://dx.doi.org/10.2307/146845910.2307/1468459Search in Google Scholar

[2] Mulholland P.J., Tank J.L., Sanzone D.M., Wollheim W.M., Peterson B.J., Webster J.R., et al., Food resources of stream macroinvertebrates determined by natural-abundance stable C and N isotopes and a 15N tracer addition, J. N. Am. Benthol. Soc., 2000, 19, 145–157 http://dx.doi.org/10.2307/146828710.2307/1468287Search in Google Scholar

[3] Elliott J.M., Day-night changes in the spatial distribution and habitat preferences of freshwater shrimps, Gammarus pulex, in a stony stream, Freshwat. Biol., 2005, 50, 552–566 http://dx.doi.org/10.1111/j.1365-2427.2005.01345.x10.1111/j.1365-2427.2005.01345.xSearch in Google Scholar

[4] Zganec K., Gottstein S., The river before damming: distribution and ecological notes on the endemic species Echinogammarus cari (Amphipoda: Gammaridae) in the Dobra River and its tributaries, Croatia, Aquat. Ecol., 2009, 43, 105–115 http://dx.doi.org/10.1007/s10452-007-9157-410.1007/s10452-007-9157-4Search in Google Scholar

[5] Leberfinger K., Bohman I., Grass, mosses, algae, or leaves? Food preference among shredders from open-canopy streams, Aquat. Ecol., 2010, 44, 195–203 http://dx.doi.org/10.1007/s10452-009-9268-110.1007/s10452-009-9268-1Search in Google Scholar

[6] Dangles O., Functional plasticity of benthic macroinvertebrates: implications for trophic dynamics in acid streams, Can. J. Fish. Aquat. Sci., 2002, 59, 1563–1573 http://dx.doi.org/10.1139/f02-12210.1139/f02-122Search in Google Scholar

[7] Felten V., Tixier G., Guerold F., De Crespin De Billy V., Dangles O., Quantification of diet variability in a stream amphipod: implications for ecosystem functioning, Fund. Appl. Limnol., 2008, 170, 303–313 http://dx.doi.org/10.1127/1863-9135/2008/0170-030310.1127/1863-9135/2008/0170-0303Search in Google Scholar

[8] Porter K.G., Enhancement of algal growth and productivity by grazing zooplankton, Science, 1976, 192, 1332–1336 http://dx.doi.org/10.1126/science.192.4246.133210.1126/science.192.4246.1332Search in Google Scholar PubMed

[9] Gladyshev M.I., Emelianova A.Y., Kalachova G.S., Zotina T.A., Gaevsky N.A., Zhilenkov M.D., Gut content analysis of Gammarus lacustris from a Siberian lake using biochemical and biophysical methods, Hydrobiologia, 2000, 431, 155–163 http://dx.doi.org/10.1023/A:100403611143310.1023/A:1004036111433Search in Google Scholar

[10] Kolmakov V.I., Gladyshev M.I., Growth and potential photosynthesis of cyanobacteria are stimulated by viable gut passage in crucian carp, Aquatic Ecol., 2003, 37, 237–242 http://dx.doi.org/10.1023/A:102580132608810.1023/A:1025801326088Search in Google Scholar

[11] Desvilettes C., Bourdier G., Amblard C., Barth B., Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae, Freshwat. Biol., 1997, 38, 629–637 http://dx.doi.org/10.1046/j.1365-2427.1997.00241.x10.1046/j.1365-2427.1997.00241.xSearch in Google Scholar

[12] Sushchik N.N., Gladyshev M.I., Moskvichova A.V., Makhutova O.N., Kalachova G.S., Comparison of fatty acid composition in major lipid classes of the dominant benthic invertebrates of the Yenisei river, Comp. Biochem. Physiol. B, 2003, 134, 111–122 http://dx.doi.org/10.1016/S1096-4959(02)00191-410.1016/S1096-4959(02)00191-4Search in Google Scholar

[13] Torres-Ruiz M., Wehr J.D., Perrone A.A., Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers, J. N. Am. Benthol. Soc., 2007, 26, 509–522 http://dx.doi.org/10.1899/06-070.110.1899/06-070.1Search in Google Scholar

[14] Lau D.C.P., Leung K.M.Y., Dudgeon D., What does stable isotope analysis reveal about trophic relationships and the relative importance of allochthonous and autochthonous resources in tropical streams? A synthetic study from Hong Kong, Freshwat. Biol., 2009, 54, 127–141 http://dx.doi.org/10.1111/j.1365-2427.2008.02099.x10.1111/j.1365-2427.2008.02099.xSearch in Google Scholar

[15] Makhutova O.N., Khromechek E.B., Fatty acids of sestonic lipid classes as a tool to study nutrition spectra of rotifers and ciliates in a Siberian eutrophic reservoir, J. Siberian Federal Univ. Biol., 2008, 1, 40–59 10.17516/1997-1389-0279Search in Google Scholar

[16] Anderson W.H., Gellermann J.L., Acetylenic acids from mosses, Lipids, 1975, 10, 501–502 http://dx.doi.org/10.1007/BF0253243710.1007/BF02532437Search in Google Scholar

[17] Dembitsky V.M., Rezanka T., Distribution of acetylenic acids and polar lipids in some aquatic bryophytes, Phytochemistry, 1995, 40, 93–97 http://dx.doi.org/10.1016/0031-9422(95)00188-D10.1016/0031-9422(95)00188-DSearch in Google Scholar

[18] Kalacheva G.S., Sushchik N.N., Gladyshev M.I., Makhutova O.N., Seasonal dynamics of fatty acids in the lipids of water moss Fontinalis antipyretica from the Yenisei River, Russ. J. Plant Physiol., 2009, 56, 794–806 http://dx.doi.org/10.1134/S102144370906009010.1134/S1021443709060090Search in Google Scholar

[19] Telang S.A., Pocklington R., Naidu A.S., Romankevich E.A., Gitelson I.I., Gladyshev M.I., Carbon and mineral transport in major North American, Russian Arctic, and Siberian Rivers: the St Lawrence, the Mackenze, the Yukon, the Arctic Alaskan Rivers, the Arctic Basin rivers in the Soviet Union, and the Yenisei, In: Degens E.T., Kempe S., Richey J.E., (Eds.), Biogeochemistry of major world rivers, Wiley & Sons, Chichester e.a., 1991, 75–104 Search in Google Scholar

[20] Anishchenko O.V., Gladyshev M.I., Kravchuk E.S., Ivanova E.A., Gribovskaya I.V., Sushchik N.N., Seasonal variations of metal concentrations in periphyton and taxonomic composition of the algal community at a Yenisei River littoral site, Cent. Eur. J. Biol., 2010, 5, 125–134 http://dx.doi.org/10.2478/s11535-009-0060-y10.2478/s11535-009-0060-ySearch in Google Scholar

[21] Sushchik N.N., Gladyshev M.I., Ivanova E.A., Kravchuk E.S., Seasonal distribution and fatty acid composition of littoral microalgae in the Yenisei River, J. Appl. Phycol., 2010, 22, 11–24 http://dx.doi.org/10.1007/s10811-009-9418-910.1007/s10811-009-9418-9Search in Google Scholar

[22] Kolmakov V.I., Anishchenko O.V., Ivanova E.A., Gladyshev M.I., Sushchik N.N., Estimation of periphytic microalgae gross primary production with DCMU-fluorescence method in Yenisei River (Siberia, Russia), J. Appl. Phycol., 2008, 20, 289–297 http://dx.doi.org/10.1007/s10811-007-9246-810.1007/s10811-007-9246-8Search in Google Scholar

[23] Sushchik N.N., Gladyshev M.I., Kalachova G.S., Makhutova O.N., Ageev A.V., Comparison of seasonal dynamics of the essential PUFA contents in benthic invertebrates and grayling Thymallus arcticus in the Yenisei river, Comp. Biochem. Physiol. B, 2006, 145, 278–287 http://dx.doi.org/10.1016/j.cbpb.2006.05.01410.1016/j.cbpb.2006.05.014Search in Google Scholar

[24] Sushchik N.N., Gladyshev M.I., Kravchuk E.S., Ivanova E.A., Ageev A.V., Kalachova G.S., Seasonal dynamics of long-chain polyunsaturated fatty acids in littoral benthos in the upper Yenisei River, Aquat. Ecol., 2007, 41, 349–365 http://dx.doi.org/10.1007/s10452-006-9065-z10.1007/s10452-006-9065-zSearch in Google Scholar

[25] Spitzer V., Structure analysis of fatty acids by gas chromatography — low resolution electron impact mass spectrometry of their 4,4-dimethyloxazoline derivatives — a review, Prog. Lipid Res., 1997, 35, 387–408 http://dx.doi.org/10.1016/S0163-7827(96)00011-210.1016/S0163-7827(96)00011-2Search in Google Scholar

[26] Vander Zanden M.J., Rasmussen J.B., Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies, Limnol. Oceanogr., 2001, 46, 2061–2066 http://dx.doi.org/10.4319/lo.2001.46.8.206110.4319/lo.2001.46.8.2061Search in Google Scholar

[27] Barnard C., Martineau C., Frenette J.-J., Dodson J.J., Vincent W.F., Trophic position of zebra mussel veligers and their use of dissolved organic carbon, Limnol. Oceanogr., 2006, 51, 1473–1484 http://dx.doi.org/10.4319/lo.2006.51.3.147310.4319/lo.2006.51.3.1473Search in Google Scholar

[28] Nilsen M., Pedersen T., Nilssen E.M., Fredriksen S., Trophic studies in a high-latitude fjord ecosystem — a comparison of stable isotope analyses (δ13C and δ15N) and trophic-level estimates from a massbalance model, Can. J. Fish. Aquat. Sci., 2008, 65, 2791–2806 http://dx.doi.org/10.1139/F08-18010.1139/F08-180Search in Google Scholar

[29] Campbell R.C., Statistics for biologists, Cambridge University Press, Cambridge, 1967 Search in Google Scholar

[30] McWilliam-Hughes S.M., Jardine T.D., Cunjak R.A., Instream C sources for primary consumers in two temperate, oligotrophic rivers: possible evidence of bryophytes as a food source, J. N. Am. Benthol. Soc., 2009, 28, 733–743 http://dx.doi.org/10.1899/08-103.110.1899/08-103.1Search in Google Scholar

[31] MacNeil C., Dick J.T.A., Elwood R.W., The trophic ecology of freshwater Gammarus spp. (Crustacea: Amphipoda): problems and perspectives concerning the functional feeding group concept, Biol. Rev., 1997, 72, 349–364 http://dx.doi.org/10.1017/S000632319600503810.1017/S0006323196005038Search in Google Scholar

[32] Berezina N., Food spectra and consumption rates of four amphipod species from the North-West of Russia, Fund. Appl. Limnol., 2007, 168, 317–326 http://dx.doi.org/10.1127/1863-9135/2007/0168-031710.1127/1863-9135/2007/0168-0317Search in Google Scholar

[33] Mayer G., Maier G., Maas A, Waloszek D., Mouthparts of the ponto-caspian invader Dikerogammarus villosus (Amphipoda: Pontogammaridae), J. Crustacean Biol., 2008, 28, 1–15 http://dx.doi.org/10.1651/07-2867R.110.1651/07-2867R.1Search in Google Scholar

[34] Parker J.D., Burkepile D.E., Collins D.O., Kubanek J., Hay M.E., Stream mosses as chemically-defended refugia for freshwater macroinvertebrates, Oikos, 2007, 116, 302–312 http://dx.doi.org/10.1111/j.0030-1299.2007.15289.x10.1111/j.0030-1299.2007.15289.xSearch in Google Scholar

[35] Mackey A.P., Trophic dependencies of some larval Chironomidae (Diptera) and fish species in the River Thames, Hydrobiologia, 1979, 62, 241–247 http://dx.doi.org/10.1007/BF0004354110.1007/BF00043541Search in Google Scholar

[36] Pardo I., Armitage P.D., Species assemblages as descriptors of mesohabitats, Hydrobiologia, 1997, 344, 111–128 http://dx.doi.org/10.1023/A:100295841223710.1023/A:1002958412237Search in Google Scholar

[37] Woodward G., Hildrew A.G., Body-size determinants of niche overlap and intraguild predation within a complex food web, J. Anim. Ecol., 2002, 71, 1063–1074 http://dx.doi.org/10.1046/j.1365-2656.2002.00669.x10.1046/j.1365-2656.2002.00669.xSearch in Google Scholar

[38] Nolte U., Hoffmann T., Life cycle of Pseudodiamesa branickii (Chironomidae) in a small upland stream, Netherlands J. Aquat. Ecol., 1992, 26, 309–314 http://dx.doi.org/10.1007/BF0225525610.1007/BF02255256Search in Google Scholar

[39] Nakano D., Yamamoto M., Okino T., Ecosystem engineering by larvae of net-spinning stream caddisflies creates a habitat on the upper surface of stones for mayfly nymphs with a low resistance to flows, Freshwat. Biol., 2005, 50, 1492–1498 http://dx.doi.org/10.1111/j.1365-2427.2005.01421.x10.1111/j.1365-2427.2005.01421.xSearch in Google Scholar

[40] Percival E., Whitehead, H., A quantitative study of the fauna of some types of stream-bed, J. Ecol., 1929, 17, 282–314 http://dx.doi.org/10.2307/225604410.2307/2256044Search in Google Scholar

[41] Maitland P.S., The distribution, life cycle, and predators of Ephemerella ignita (Poda) in the River Endrick, Scotland, Oikos, 1955, 16, 48–57 http://dx.doi.org/10.2307/356486410.2307/3564864Search in Google Scholar

[42] Rosillon D., Food preference and relative influence of temperature and food quality on life history characteristics of a grazing mayfly, Ephemerella ignita (Poda), Can. J. Zool., 1988, 66, 1474–1481 http://dx.doi.org/10.1139/z88-21410.1139/z88-214Search in Google Scholar

[43] Willoughby L.G., Mappin R.G., The distribution of Ephemerella ignita (Ephemeroptera) in streams: the role of pH and food resources, Freshwat. Biol., 1988, 19, 145–155 http://dx.doi.org/10.1111/j.1365-2427.1988.tb00337.x10.1111/j.1365-2427.1988.tb00337.xSearch in Google Scholar

[44] Riano P., Basaguren A., Pozo J., Diet variation of Ephemerella ignita (Poda) (Ephemeroptera: Ephemerellidae) in relation to developmental stage, In: Landolt E., Sartori M., (Eds.), Ephemeroptera and Plecoptera: Biology — Ecology — Systematics, MTL, Fribourg, 1997, 60–64 Search in Google Scholar

Published Online: 2011-2-4
Published in Print: 2011-4-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-010-0115-0/html
Scroll to top button