Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 6, Issue 3


Volume 10 (2015)

Drought tolerance in cereals in terms of water retention, photosynthesis and antioxidant enzyme activities

Szilvia Bencze / Zsuzsanna Bamberger / Tibor Janda / Krisztina Balla / Zoltán Bedő / Ottó Veisz
Published Online: 2011-04-27 | DOI: https://doi.org/10.2478/s11535-011-0004-1


Experiments were carried out on three bread wheat varieties, one barley and one durum wheat variety grown in pots in the phytotron and subjected to water withdrawal for 7 days during grain-filling. Leaf water loss, net assimilation rate and transpiration showed marked differences, allowing the genotypes to be ranked. Although the most resistant variety had the highest activity for ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) and glutathione-S-transferase (GST), which did not rise further in response to drought and the most susceptible variety had the lowest values, which increased to the greatest extent under drought, the level of sensitivity could not be predicted for all the genotypes from the enzyme activity values alone. The largest increases were recorded for the APX, CAT and GR activities. In most genotypes the GR activity was correlated with that of GST, CAT and APX. Changes in the enzyme activities were observed after a decline in transpiration and photosynthesis. The range of soil moisture values over which the antioxidant enzyme activity levels remained relatively unchanged was a better indication of tolerance to drought than either basic or stress-induced activity levels.

Keywords: Cereals; Drought; Stress tolerance; Photosynthesis; Antioxidant enzyme system

  • [1] Chaves H.M., Pereira J.S., Maroco J., Rodrigues M.L., Ricardo C.P.P., Osório M.L., et al., How plants cope with water stress in the field. Photosynthesis and growth, Ann. Bot., 2002, 89, 907–916 http://dx.doi.org/10.1093/aob/mcf105CrossrefGoogle Scholar

  • [2] Kameli A., Lösel D.M., Carbohydrates and water status in wheat plants under water stress, New Phytol., 1993, 125, 609–614 http://dx.doi.org/10.1111/j.1469-8137.1993.tb03910.xCrossrefGoogle Scholar

  • [3] Sarker A.M., Rahman M.S., Paul N.K., Effect of soil moisture on relative leaf water content, chlorophyll, proline and sugar accumulation in wheat, J. Agron. Crop. Sci., 1999, 183, 225–229 http://dx.doi.org/10.1046/j.1439-037x.1999.00339.xCrossrefGoogle Scholar

  • [4] Niedzwieds-Siegien I., Bogatek-Leszczynska R., Côme D., Corbineau F., Effects of drying rate on dehydration sensitivity of excised wheat seedlings shoots as related to sucrose metabolism and antioxidant enzyme activities, Plant Sci., 2004, 167, 879–888 http://dx.doi.org/10.1016/j.plantsci.2004.05.042CrossrefGoogle Scholar

  • [5] Tuba Z., Csintalan Z., Péli E.R., Plant physiological basis for environmental protection and management (Környezetvédelmi és környezetgazdálkodási növényélettani alapok), SZIE MKK Növénytani és Növényélettani Tanszék, Gödöllő, 2004, 30–33, (in Hungarian) Google Scholar

  • [6] Loggini B., Scartazza A., Brugnoli E., Navari-Izzo F., Antioxidant defense system, pigment composition and photosynthesis efficiency in two wheat cultivars subjected to drought, Plant Physiol., 1999, 119, 1091–1099 http://dx.doi.org/10.1104/pp.119.3.1091CrossrefGoogle Scholar

  • [7] Baisak R., Rana D., Acharya P.B.B., Kar M., Alterations in the active oxygen scavenging enzymes of wheat leaves subjected to water stress, Plant Cell Physiol., 1994, 35, 489–495 Google Scholar

  • [8] Apel K., Hirt H., Reactive oxygen species: metabolism, oxidative stress and signal transduction, Ann. Rev. Plant Biol., 2004, 55, 373–399 http://dx.doi.org/10.1146/annurev.arplant.55.031903.141701CrossrefGoogle Scholar

  • [9] Pogány M., Harrach B.D., Hafez Y.M., Barna B., Király Z., Páldi E., Role of reactive oxygen species in abiotic and biotic stresses in plants, Acta Phytopathol. Entomol. Hung., 2006, 41, 23–35 http://dx.doi.org/10.1556/APhyt.41.2006.1-2.3CrossrefGoogle Scholar

  • [10] Farrant J.M., Bailly C., Leymarie J., Hamman B., Come D., Corbineau F., Wheat seedlings as a model to understand the desiccation tolerance and sensitivity, Physiol. Plant., 2004, 120, 563–574 http://dx.doi.org/10.1111/j.0031-9317.2004.0281.xCrossrefGoogle Scholar

  • [11] Selote D., Khanna-Chopra R., Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings, Physiol. Plant., 2006, 127, 494–504 http://dx.doi.org/10.1111/j.1399-3054.2006.00678.xCrossrefGoogle Scholar

  • [12] Zhang J.X., Kirkham M.B., Drought stress induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species, Plant Cell Physiol., 1984, 35, 785–791 Google Scholar

  • [13] Sairam R.K., Saxena D.C., Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance, J. Agron. Crop Sci., 2000, 184,1, 55–61 http://dx.doi.org/10.1046/j.1439-037x.2000.00358.xCrossrefGoogle Scholar

  • [14] Keles Y., Öncel I., Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings, Plant Sci., 2002, 163, 783–790 http://dx.doi.org/10.1016/S0168-9452(02)00213-3CrossrefGoogle Scholar

  • [15] Takele A., Farrant J., Enzymatic antioxidant defence mechanisms of maize and sorghum after exposure to and recovery from pre- and post-flowering dehydration, Acta Agron. Hung., 2009, 57, 445–459 http://dx.doi.org/10.1556/AAgr.57.2009.4.7CrossrefGoogle Scholar

  • [16] Almeselmani M., Deshmukh P.S., Sairam R.K., High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes, Acta Agron. Hung., 2009, 57, 1–14 http://dx.doi.org/10.1556/AAgr.57.2009.1.1CrossrefGoogle Scholar

  • [17] Sairam R.K., Srivastava G.C., Water stress tolerance of wheat (Triticum aestivum L.) variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes, J. Agron. Crop Sci., 2001, 186, 63–70 http://dx.doi.org/10.1046/j.1439-037x.2001.00461.xCrossrefGoogle Scholar

  • [18] Lascano H.R., Antonicelli G.E., Luna C.M., Melchiorre M.N., Gomez L.D., Racca R.W., et al., Antioxidant system response of different wheat cultivars under drought: field and in vitro studies, Aust. J. Plant Physiol., 2001, 28, 1095–1102 Google Scholar

  • [19] Tischner T., Kőszegi B., Veisz O., Climatic programmes used in the Martonvásár Phytotron most frequently in recent years, Acta Agron. Hung., 1997, 45, 85–104 Google Scholar

  • [20] Tottman D.R., Makepeace R.J., An explanation of the decimal code for the growth stages of cereals, with illustrations, Ann. Appl. Biol., 1979, 93, 221–234 http://dx.doi.org/10.1111/j.1744-7348.1979.tb06534.xCrossrefGoogle Scholar

  • [21] Janda T., Cséplő M., Németh C., Vida G., Pogány M., Szalai G., et al., Combined effect of water stress and infection with the necrotrophic fungal pathogen Drechslera tritici-repentis on growth and antioxidant activity in wheat, Cereal Res. Commun., 2008, 36, 53–64 http://dx.doi.org/10.1556/CRC.36.2008.1.6CrossrefGoogle Scholar

  • [22] Smith I.K., Vierheller T.L., Thorne C.A., Assay of glutathione reductase in crude tissue homogenates using 5,5-dithiobis (2-nitrobenzoic acid), Anal. Biochem., 1988, 175, 408–413 http://dx.doi.org/10.1016/0003-2697(88)90564-7Google Scholar

  • [23] Ádám A., Bestwick C.S., Barna B., Mansfield J.W. Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv. phaseolica, Planta, 1995, 197, 240–249 http://dx.doi.org/10.1007/BF00202643CrossrefGoogle Scholar

  • [24] Nakano Y., Asada Y., Purification of ascorbate peroxidase from spinach chloroplasts: its activation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical, Plant Cell Physiol., 1987, 28, 131–140 Google Scholar

  • [25] Sabeva S., Nedeva D., Antioxidant enzymes in germinating wheat seeds as affected by dehydration stress, ABA and hydrogen peroxide, Acta Agron. Hung., 2008, 56,2, 113–127 http://dx.doi.org/10.1556/AAgr.56.2008.2.1CrossrefGoogle Scholar

  • [26] Khanna-Chopra R., Selote D., Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than -susceptible wheat cultivar under field conditions, Environ. Exp. Bot., 2007, 60, 276–283 http://dx.doi.org/10.1016/j.envexpbot.2006.11.004CrossrefGoogle Scholar

  • [27] Foyer C.H., Noctor G., Redox homeostasis and antioxidant signalling. A metabolic interface between stress perception and physiological responses, Plant Cell, 2007, 17, 1866–1875 http://dx.doi.org/10.1105/tpc.105.033589CrossrefGoogle Scholar

  • [28] Noctor G., Veljovic-Jovabnic S., Foyer C.H., Peroxide processing in photosynthesis: antioxidant coupling and redox signalling, Phil. Trans. R. Soc. Lond. B, 2000, 355, 1465–1475 http://dx.doi.org/10.1098/rstb.2000.0707CrossrefGoogle Scholar

  • [29] Balla K., Bencze S., Janda T., Veisz O., Analysis of heat stress tolerance in winter wheat, Acta Agron. Hung., 2009, 57, 437–444 http://dx.doi.org/10.1556/AAgr.57.2009.4.6CrossrefGoogle Scholar

  • [30] Bartling D., Radzio R, Steiner U., Weiler E.W., A glutathione-S-transferase with glutathione peroxidase activity from Arabidopsis thaliana. Molecular cloning and functional characterization, Eur. J. Biochem., 1993, 216, 579–586 http://dx.doi.org/10.1111/j.1432-1033.1993.tb18177.xCrossrefGoogle Scholar

  • [31] Kocheva K.V., Kartseva T., Landjeva S., Georgiev G.I., Physiological response of wheat seedlings to mild and severe osmotic stress, Cereal Res. Commun., 2009, 37, 199–208 http://dx.doi.org/10.1556/CRC.37.2009.2.6CrossrefGoogle Scholar

  • [32] Veisz O., Bencze S., Balla K., Vida G., Bedő Z., Change in water stress resistance of cereals due to atmospheric CO2 enrichment, Cereal Res. Commun., 2008, 36, 1095–1098 Google Scholar

About the article

Published Online: 2011-04-27

Published in Print: 2011-06-01

Citation Information: Open Life Sciences, Volume 6, Issue 3, Pages 376–387, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-011-0004-1.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jolanta Biesaga-Kościelniak, Agnieszka Ostrowska, Maria Filek, Michał Dziurka, Piotr Waligórski, Magdalena Mirek, and Janusz Kościelniak
Agriculture, 2014, Volume 4, Number 2, Page 96
S. Bencze, Z. Bamberger, T. Janda, K. Balla, B. Varga, Z. Bedő, and O. Veisz
Photosynthetica, 2014, Volume 52, Number 1, Page 71
I. Paul Ajithkumar and R. Panneerselvam
Asian Pacific Journal of Reproduction, 2013, Volume 2, Number 3, Page 220
S. Bencze, K. Balla, T. Janda, and O. Veisz
Acta Agronomica Hungarica, 2013, Volume 61, Number 2, Page 91
Svetlana V. Osipova, Aleksey V. Permyakov, Marina D. Permyakova, Tatyana A. Pshenichnikova, Mikhail A. Genaev, and Andreas Börner
Acta Physiologiae Plantarum, 2013, Volume 35, Number 8, Page 2455
V. Kovács, G. Vida, G. Szalai, T. Janda, and M. Pál
Acta Agronomica Hungarica, 2012, Volume 60, Number 2, Page 131

Comments (0)

Please log in or register to comment.
Log in