Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year

IMPACT FACTOR 2016 (Open Life Sciences): 0.448

CiteScore 2016: 1.02

SCImago Journal Rank (SJR) 2016: 0.329
Source Normalized Impact per Paper (SNIP) 2016: 0.621

Open Access
See all formats and pricing
More options …
Volume 6, Issue 3 (Jun 2011)


Increased vegetative development and sturdiness of storekeeper-transgenic tobacco

Moritz Bömer
  • Westphalian Wilhelms-University Münster, Institute for Biochemistry and Biotechnology of Plants (IBBP), 48143, Münster, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joachim Uhrig / Guido Jach / Kai Müller
Published Online: 2011-04-27 | DOI: https://doi.org/10.2478/s11535-011-0009-9


The STOREKEEPER (STK) family of DNA-binding proteins work as transcription factors and the ectopic expression of two stk-like genes from Arabidopsis thaliana, stk01 (At1g61730) and stk03 (At4g00238), in tobacco increased the number of vegetative internodes and promoted plant and leaf size, stem diameter and sturdiness. The development of these plants started with rosette formation while pronounced shoot elongation and flowering was delayed. Moreover, when the STK01 and STK03 proteins were fused to the Herpes Simplex Virus VP16 transcriptional activation domain and expressed in tobacco the vigorous storekeeper-phenotype did not appear indicating that transgenic STK-like proteins in part worked as repressors of tobacco reproductive development. Furthermore, Yeast Two-Hybrid screenings proved that STK01 and STK03 can form homodimers and heterodimers with further members of the STKlike family. Therefore, we assume that interactions between transgenic Arabidopsis STKs and resident tobacco STKs could have contributed to the observed developmental changes in transgenic tobacco. Our findings open up promising applications for overexpression of stk-like genes in crops that benefit from increased sturdiness and vegetative organ development, such as tobacco in molecular farming approaches, biomass-based energy crops and medicinal plants that produce bioactive compounds in leaves.

Keywords: Storekeeper; GEBP-like (GPL) proteins; Sturdiness; Flowering time; Rosette; Biomass

  • [1] Twyman R.M., Stöger E., Schillberg S., Christou P., Fischer R., Molecular farming in plants: host systems and expression technology, Trends Biotechnol., 2003, 21, 570–578 http://dx.doi.org/10.1016/j.tibtech.2003.10.002CrossrefGoogle Scholar

  • [2] Sticklen M., Plant genetic engineering to improve biomass characteristics for biofuels, Curr. Opin. Biotechnol., 2006, 17, 315–319 http://dx.doi.org/10.1016/j.copbio.2006.05.003CrossrefGoogle Scholar

  • [3] Huang S., Cerny R.E., Baht D.S., Brown S.M., Cloning of an Arabidopsis patatin-like gene, STURDY, by activation T-DNA tagging, Plant Physiol., 2001, 125, 573–584 http://dx.doi.org/10.1104/pp.125.2.573CrossrefGoogle Scholar

  • [4] Salamini F., Hormones and the Green Revolution, Science, 2003, 302, 71–72 http://dx.doi.org/10.1126/science.1090811CrossrefGoogle Scholar

  • [5] Zourelidou M., de Torres-Zabala M., Smith C., Bevan M.W., Storekeeper defines a new class of plant-specifc DNA-binding proteins and is a putative regulator of patatin expression, Plant J., 2002, 30, 489–497 http://dx.doi.org/10.1046/j.1365-313X.2002.01302.xCrossrefGoogle Scholar

  • [6] Curaba J., Herzog M., Vachon, G., GeBP, the first member of a new gene family in Arabidopsis, encodes a nuclear protein with DNA binding activity and is regulated by KNAT1, Plant J., 2003, 33, 305–317 http://dx.doi.org/10.1046/j.1365-313X.2003.01622.xCrossrefGoogle Scholar

  • [7] Chevalier F., Perazza D., Laporte F., Le Hénaff G., Hornitschek P., Bonneville J.-M., et al., GeBP and GeBP-like proteins are noncanonical leucinezipper transcription factors that regulate cytokinin response in Arabidopsis, Plant Physiol., 2008, 146, 1142–1154 http://dx.doi.org/10.1104/pp.107.110270CrossrefGoogle Scholar

  • [8] Busch M.A., Bomblies K., Weigel D., Activation of a floral homeotic gene in Arabidopsis, Science, 1999, 285, 585–587 http://dx.doi.org/10.1126/science.285.5427.585CrossrefGoogle Scholar

  • [9] Töpfer R., Matzeit V., Gronenborn B., Schell J., Steinbiß H.-H., A set of plant expression vectors for transcriptional and translational fusions, Nucl. Acids Res., 1987, 15, 5890 http://dx.doi.org/10.1093/nar/15.14.5890CrossrefGoogle Scholar

  • [10] Horsch R.B., Fry J.E., Hoffmann N.L., Eichholtz D., Rogers S.G., Fraley, R.T., A simple and general method for transferring genes into plants, Science, 1985, 227, 1229–1231 http://dx.doi.org/10.1126/science.227.4691.1229CrossrefGoogle Scholar

  • [11] Clough S.J., Bent A.F., Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J., 1998, 16, 735–743 http://dx.doi.org/10.1046/j.1365-313x.1998.00343.xCrossrefGoogle Scholar

  • [12] Locatelli F., Vannini C., Magnani E., Coraggio I., Bracale M., Efficiency of transient transformation in tobacco protoplasts is independent of plasmid amount, Plant Cell Rep., 2003, 21, 865–871 Google Scholar

  • [13] Jefferson R.A., Kavanagh T.A., Bevan M.W., GUS fusions: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J., 1987, 6, 3901–3907 Google Scholar

  • [14] Sambrook J., Fritsch E.F., Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989 Google Scholar

  • [15] Scholz M., Lipinski M., Leupold M., Luftmann H., Ofir R., Fischer R., et al., Methyl jasmonate induced accumulation of kalopanaxsaponin I in Nigella sativa, Phytochemistry, 2009, 70, 517–522 http://dx.doi.org/10.1016/j.phytochem.2009.01.018CrossrefGoogle Scholar

  • [16] Töpfer R., Pröls M., Schell J., Steinbiß H.-H., Transient gene expression in tobacco protoplasts: II. Comparison of the reporter gene systems for CAT, NPT and GUS, Plant Cell Rep., 1988, 7, 225–228 http://dx.doi.org/10.1007/BF00272529CrossrefGoogle Scholar

  • [17] Halladay J.P., Craig E.A., Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast, Genetics, 1996, 144, 1425–1436 Google Scholar

  • [18] Harper J.W., Adami G.R., Wie N., Keyomarsi K., Elledge, S.J., The p21 Cdk-Interacting protein cip1 is a potent inhibitor of G1 Cyclin-dependent Kinases, Cell, 1993, 75, 805–816 http://dx.doi.org/10.1016/0092-8674(93)90499-GCrossrefGoogle Scholar

  • [19] Gietz R.D., Schiestl R.H., Willems A.R., Woods R.A., Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure, Yeast, 1995, 11, 355–360 http://dx.doi.org/10.1002/yea.320110408CrossrefGoogle Scholar

  • [20] Nemeth K., Salchert K., Putnoky P., Bhalerao R., Koncz-Kalman Z., Stankovic-Stangeland B., et al., Pleiotropic control of glucose and hormone responses by PRL1, a nuclear WD protein, in Arabidopsis, Genes Dev., 1998, 12, 3059–3073 http://dx.doi.org/10.1101/gad.12.19.3059CrossrefGoogle Scholar

  • [21] Soellick T.R., Uhrig J.F., Development of an optimized interaction-mating protocol for largescale yeast two-hybrid analyses, Genome Biol., 2001, 2, http://genomebiology.com/2001/2/12/research/0052 Google Scholar

  • [22] Kempin S.A., Mandel A., Yanofsky M.F., Conversion of perianth into reproductive organs by ectopic expression of tobacco floral homeotic gene NAG1, Plant Physiol., 1993, 103, 1041–1046 http://dx.doi.org/10.1104/pp.103.4.1041CrossrefGoogle Scholar

  • [23] Amaya I., Ratcliffe O.J., Bradley D.J., Expression of CENTRORADIALIS (CEN) and CEN-like genes in tobacco reveals a conserved mechanism controlling phase change in diverse species, Plant Cell, 1999, 11, 1405–1417 http://dx.doi.org/10.1105/tpc.11.8.1405CrossrefGoogle Scholar

  • [24] Drews G.N., Beals T.P., Bui A.Q., Goldberg R.B., Regional and cell-specific gene expression patterns during petal development, Plant Cell, 1992, 4, 1383–1404 http://dx.doi.org/10.1105/tpc.4.11.1383CrossrefGoogle Scholar

  • [25] Dhondt S., Geoffrey P., Stelmach B.A., Legrand M., Heitz T., Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes, Plant J., 2000, 23, 431–440 http://dx.doi.org/10.1046/j.1365-313x.2000.00802.xCrossrefGoogle Scholar

About the article

Published Online: 2011-04-27

Published in Print: 2011-06-01

Citation Information: Open Life Sciences, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-011-0009-9.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

L. O. Sakhno
Biopolymers and Cell, 2013, Volume 29, Number 6, Page 443

Comments (0)

Please log in or register to comment.
Log in