Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 6, Issue 3

Issues

Volume 10 (2015)

An in vitro microbial model associated with sucrose to produce dentin caries lesions

Carolina Steiner-Oliveira
  • Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas, 13414-900, Piracicaba, SP, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lidiany Rodrigues / Iriana Zanin / Carolina Carvalho
  • Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas, 13414-900, Piracicaba, SP, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Regianne Kamiya
  • Department of Oral Diagnosis, Microbiology and Immunology Laboratories — Piracicaba Dental School, University of Campinas, 13414-900, Piracicaba, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anderson Hara / Marinês Nobre-dos-Santos
  • Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas, 13414-900, Piracicaba, SP, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-04-27 | DOI: https://doi.org/10.2478/s11535-011-0011-2

Abstract

The complexity of the oral environment and ethical issues have prompted the development of an in vitro bacterial model to evaluate the effect of frequency of sucrose exposure on dentin caries formation, biofilm composition, and pH changes. In the experiment, dentin specimens (n=45) were randomly divided into four groups: control (C), negative control (0S), 3S (three sucrose baths), and 6S (six sucrose baths). The specimens then were inoculated with Streptococcus mutans and treated according to the protocol described below. Dentin demineralization and lesion depth were assessed by transverse microradiography. Extracellular polysaccharides that formed in the biofilm were analyzed and counts of microorganisms in the carious dentin were measured. After a 7-day period of growth, the biofilm pH was assessed before and after sucrose baths (n=5). The addition of sucrose led to dentin caries development regardless of the number of sucrose baths performed. The number of colony forming units (cfu) from the carious dentin did not differ among the treatment groups, though the extracellular polysaccharides from both 3S and 6S differed from 0S. The pH decreased immediately after the sucrose bath but increased again after 5 min. We demonstrate here that the in vitro microbial model for the study of dentin caries formation is reproducible and able to produce dentin caries, irrespective of the frequency of sucrose exposure.

Keywords: Artificial saliva; Streptococcus mutans; Biofilm pH; Microradiography

  • [1] Featherstone J.D., Modeling the caries-inhibitory effects of dental materials, Dent. Mater., 1996, 12, 194–197 http://dx.doi.org/10.1016/S0109-5641(96)80021-2CrossrefGoogle Scholar

  • [2] Holly F.J., Gray J.A., Mechanism for incipient carious lesion growth utilizing a physical model based on diffusion concepts, Arch. Oral. Biol., 1968, 13, 319–334 http://dx.doi.org/10.1016/0003-9969(68)90130-1CrossrefGoogle Scholar

  • [3] Bradshaw D.J., Marsh P.D., Allison C., Schilling K.M., Effect of oxygen, inoculum composition and flow rate on development of mixed-culture oral biofilms, Microbiology, 1996, 142, 623–629 http://dx.doi.org/10.1099/13500872-142-3-623CrossrefGoogle Scholar

  • [4] Bradshaw D.J., Marsh P.D., Schilling K.M., Cummins D., A modified chemostat system to study the ecology of oral biofilms, J. Appl. Bacteriol., 1996, 80, 124–130 CrossrefGoogle Scholar

  • [5] Bradshaw D.J., Marsh P.D., Analysis of pH-driven disruption of oral microbial communities in vitro, Caries Res., 1998, 32, 456–462 http://dx.doi.org/10.1159/000016487CrossrefGoogle Scholar

  • [6] Donoghue H.D., Perrons C.J., Effect of nutrients on defined bacterial plaques and Streptococcus mutans C67-1 implantation in a model mouth, Caries Res., 1991, 25, 108–115 http://dx.doi.org/10.1159/000261352CrossrefGoogle Scholar

  • [7] Kinniment S.L., Wimpenny J.W., Adams D., Marsh P.D., Development of a steady-state oral microbial biofilm community using the constant-depth film fermenter, Microbiology, 1996, 142, 631–638 http://dx.doi.org/10.1099/13500872-142-3-631CrossrefGoogle Scholar

  • [8] Pratten J., Smith A.W., Wilson M., Response of single species biofilms and microcosm dental plaques to pulsing with chlorhexidine, J. Antimicrob. Chemother., 1998, 42, 453–459 http://dx.doi.org/10.1093/jac/42.4.453CrossrefGoogle Scholar

  • [9] Zanin I.C., Lobo M.M., Rodrigues L.K., Pimenta L.A., Höfling J.F., Gonçalves R.B., Photosensitization in vitro biofilms by toluidine blue O combined with a lightemitting diode, Eur. J. Oral Sci., 2006, 114, 64–69 http://dx.doi.org/10.1111/j.1600-0722.2006.00263.xCrossrefGoogle Scholar

  • [10] Marsh P.D., Are dental diseases examples of ecological catastrophes?, Microbiology, 2003, 149, 279–294 http://dx.doi.org/10.1099/mic.0.26082-0CrossrefGoogle Scholar

  • [11] Schilling K.M., Bowen W.H., Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans, Infect. Immun., 1992, 60, 284–295 Google Scholar

  • [12] Dibdin G.H., Shellis R.P., Physical and biochemical studies of Streptococcus mutans sediments suggest new factors linking the cariogenicity of plaque with its extracellular polysaccharide content, J. Dent. Res., 1988, 67, 890–895 http://dx.doi.org/10.1177/00220345880670060101CrossrefGoogle Scholar

  • [13] Zero D.T., Van Houte J., Russo J., The intra-oral effect on enamel demineralization of extracellular matrix material synthesized from sucrose by Streptococcus mutans, J. Dent. Res., 1986, 65, 918–923 http://dx.doi.org/10.1177/00220345860650061201CrossrefGoogle Scholar

  • [14] Amaechi B.T., Higham S.M., Edgar W.M., Factors affecting the development of carious lesions in bovine teeth in vitro, Arch. Oral Biol., 1998, 43, 619–628 http://dx.doi.org/10.1016/S0003-9969(98)00043-0CrossrefGoogle Scholar

  • [15] Rodrigues L.K., Cury J.A., Nobre dos Santos M., The effect of gamma radiation on enamel hardness and its resistance to demineralization in vitro, J. Oral Sci., 2004, 46, 215–220 http://dx.doi.org/10.2334/josnusd.46.215CrossrefGoogle Scholar

  • [16] Edmunds D.H., Whittaker D.K., Green R.M., Suitability of human, bovine, equine and ovine tooth enamel for studies of artificial bacterial carious lesions, Caries Res., 1988, 22, 327–336 http://dx.doi.org/10.1159/000261132CrossrefGoogle Scholar

  • [17] Dubois M., Gilles K., Hamilton J.K., Rebers P.A., Smith F., Colorimetric method for determination of sugars of related substances, Anal. Chem., 1956, 28, 350–356 http://dx.doi.org/10.1021/ac60111a017CrossrefGoogle Scholar

  • [18] Lima J.P.M., Sampaio de Melo M.A., Borges F.M.C., Teixeira A.H., Steiner-Oliveira C., Nobre dos Santos M., et al., Evaluation of the antimicrobial effect of photodynamic antimicrobial therapy in an in situ model of dentine caries, Eur. J. Oral Sci., 2009, 117, 568–574 http://dx.doi.org/10.1111/j.1600-0722.2009.00662.xCrossrefGoogle Scholar

  • [19] Van der Veen M.H., Tsuda H., Arends J., Ten Bosch J.J., Evaluation of sodium fluorescein for quantitative diagnosis of root caries, J. Dent. Res., 1996, 75, 588–593 http://dx.doi.org/10.1177/00220345960750011201CrossrefGoogle Scholar

  • [20] Deng D.M., Ten Cate J.M., Demineralization of dentin by Streptococcus mutans biofilms grown in the constant depth film fermentor, Caries Res., 2004, 38, 54–61 http://dx.doi.org/10.1159/000073921CrossrefGoogle Scholar

  • [21] Beighton D., Hayday H., The influence of diet on the growth of streptococcal bacteria on the molar teeth of monkeys (Macaca fascicularis), Arch. Oral. Biol., 1986, 31, 449–454 http://dx.doi.org/10.1016/0003-9969(86)90018-XCrossrefGoogle Scholar

  • [22] Ögaard B., Rölla G., Arends J., In vivo progress of enamel and root surface lesions under plaque as a function of time, Caries Res., 1988, 22, 302–305 http://dx.doi.org/10.1159/000261125CrossrefGoogle Scholar

  • [23] Paes Leme A.F., Koo H., Bellato C.M., Bedi G., Cury J.A., The role of sucrose in cariogenic dental biofilm formation—new insight, J. Dent. Res., 2006, 85, 878–887 http://dx.doi.org/10.1177/154405910608501002CrossrefGoogle Scholar

  • [24] Hefti A., Schmid R., Effect on caries incidence in rats of increasing dietary sucrose levels, Caries Res., 1979, 13, 298–300 http://dx.doi.org/10.1159/000260414CrossrefGoogle Scholar

  • [25] Aires C.P., Tabchoury C.P., Del Bel Cury A.A., Koo H., Cury J.A., Effect of sucrose concentration on dental biofilm formed in situ and on enamel demineralization, Caries Res., 2006, 40, 28–32 http://dx.doi.org/10.1159/000088902CrossrefGoogle Scholar

  • [26] Bowen W.H., Do we need to be concerned about dental caries in the coming millennium?, Crit. Rev. Oral Biol. Med., 2002, 13, 126–131 http://dx.doi.org/10.1177/154411130201300203CrossrefGoogle Scholar

  • [27] Mattos-Graner R.O., Smith D.J., King W.F., Mayer M.P., Water-insoluble glucan synthesis by mutans streptococcal strains correlates with caries incidence in 12- to 30-month-old children, J. Dent. Res., 2000, 79, 1371–1377 http://dx.doi.org/10.1177/00220345000790060401CrossrefGoogle Scholar

  • [28] Nobre dos Santos M., Melo dos Santos L., Francisco S.B., Cury J.A., Relationship among dental plaque composition, daily sugar exposure and caries in the primary dentition, Caries Res., 2002, 36, 347–352 http://dx.doi.org/10.1159/000065959CrossrefGoogle Scholar

  • [29] Cury J.A., Rebelo M.A.B., Del Bel Cury A.A., Derbyshire M.T.V.C, Tabchoury C.P.M., Biochemical composition and cariogenicity of dental plaque formed in the presence of sucrose or glucose and fructose, Caries Res., 2000, 34, 491–497 http://dx.doi.org/10.1159/000016629CrossrefGoogle Scholar

  • [30] Tenuta L.M.A., Ricomini Filho A.P., Del Bel Cury A.A., Cury J.A., Effect of sucrose on the selection of mutans streptococci and lactobacilli in dental biofilm formed in situ, Caries Res., 2006, 40, 546–549 http://dx.doi.org/10.1159/000095656CrossrefGoogle Scholar

About the article

Published Online: 2011-04-27

Published in Print: 2011-06-01


Citation Information: Open Life Sciences, Volume 6, Issue 3, Pages 414–421, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-011-0011-2.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Mary Anne S. Melo, Juliana P.M.L. Rolim, Iriana C.J. Zanin, José J.A. Silva, Alexandre R. Paschoal, Alejandro P. Ayala, and Lidiany K.A. Rodrigues
Photochemistry and Photobiology, 2014, Volume 90, Number 1, Page 183

Comments (0)

Please log in or register to comment.
Log in