Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 6, Issue 3

Issues

Volume 10 (2015)

Magnesium substitution effect on porous scaffolds for bone repair

Oana Craciunescu
  • Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, 060031, Bucharest, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christu Tardei / Lucia Moldovan
  • Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, 060031, Bucharest, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Otilia Zarnescu
Published Online: 2011-04-27 | DOI: https://doi.org/10.2478/s11535-011-0012-1

Abstract

Of great interest in developing artificial bone is the incorporation of magnesium (Mg) ions into the ceramic lattice in order to improve the physico-chemical and structural properties of the material and to increase its morphological affinity towards newly formed osseous tissue. In the present study, we evaluated the morphological and biological properties of composite scaffolds fabricated by mixing a nanopowder of Mg-substituted beta-tricalcium phosphate with collagen type I in two dry weight ratios (variant I and II). We used biochemical methods, and electron and light microscopy to investigate their porosity, biodegradability and morphology. Osteoblast cell culture behavior in the presence of nanocomposite variants was also examined. Variant I scaffold presented a higher percentage of cross-links and a better resistance to collagenase degradation compared to variant II scaffold. Their porosity did not vary significantly. Osteoblasts cultivated in the presence of nanocomposite scaffolds for 72 h exhibited good cell viability and a normal morphology. When osteoblasts were injected into the scaffolds, a slightly higher proportion of adhered cells were observed for Mg-substituted samples after 7 days of cultivation. All these results showed that Mg-containing porous composite scaffolds had controlled degradation, allowed osteoblast proliferation and adhesion and are good candidates for bone repair.

Keywords: Collagen; Tricalcium phosphate; Magnesium; Cross-linking; Osteoblast; Bone; Tissue engineering

  • [1] Barrere F., van Blitterswijk C.A., de Groot K., Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics, Int. J. Nanomed., 2006, 1, 317–332 Google Scholar

  • [2] Laurencin C., Khan Y., El-Amin S.F., Bone graft substitutes, Expert Rev. Med. Devices, 2006, 3, 49–57 http://dx.doi.org/10.1586/17434440.3.1.49CrossrefGoogle Scholar

  • [3] Fujita R., Yokoyama A., Nodosaka Y., Kohgo T., Kawasaki T., Ultrastructure of ceramic-bone interface using HA and beta-tricalcium phosphate ceramics and replacement mechanism of beta-tricalcium phosphate in bone, Tissue & Cell, 2003, 35, 427–440 http://dx.doi.org/10.1016/S0040-8166(03)00067-3CrossrefGoogle Scholar

  • [4] Takahashi Y., Yamamoto M., Tabata Y., Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate, Biomaterials, 2005, 26, 4856–4865 http://dx.doi.org/10.1016/j.biomaterials.2005.01.012CrossrefGoogle Scholar

  • [5] Chen K.-Y., Shyu P.-C., Dong G.-C., Chen Y.-S., Kuo W.-W., Yao C.-H., Reconstruction of calvarial defect using a tricalcium phosphate-oligomeric proanthocyanidins cross-linked gelatin composite, Biomaterials, 2009, 30, 1682–1688 http://dx.doi.org/10.1016/j.biomaterials.2008.12.024CrossrefGoogle Scholar

  • [6] LeGeros R.Z., Calcium phosphates in oral biology and medicine, In: Myers H., (Ed.), Monographs in oral science, vol. 15, Karger AG, Basel, 1991 Google Scholar

  • [7] Bigi A., Foresti E., Gregoriani R., Ripamonti A., Roveri N., Shah J.S., The role of magnesium on the structure of biological apatites, Calcif. Tissue Int., 1992, 50, 439–444 http://dx.doi.org/10.1007/BF00296775CrossrefGoogle Scholar

  • [8] Posner A.S., The mineral of bone, Clin. Orthop. Relat. Res., 1985, 200, 87–99 Google Scholar

  • [9] Rude R.K., Singer F.R., Gruber H.E., Skeletal and hormonal effects of magnesium deficiency, J. Am. Coll. Nutr., 2009, 28, 131–141 CrossrefGoogle Scholar

  • [10] Gruber H.E., Rude R.K., Wei L., Frausto A., Mills B.G., Norton H.J., Magnesium deficiency: effect on bone mineral density in the mouse appendicular skeleton, BMC Musculoskeletal Disorders, 2003, 4, 7–12 http://dx.doi.org/10.1186/1471-2474-4-7CrossrefGoogle Scholar

  • [11] Seelig M.S., Magnesium deficiency in the pathogenesis of disease, 1st Ed., New York University Medical Center, New York, 1980 Google Scholar

  • [12] Enderle N., Gotz-Neunhoeffer F., Gobbels M., Muller F.A., Influence of magnesium doping on the phase transformation temperature of beta-TCP ceramics examined by Rietveld refinement, Biomaterials, 2005, 26, 3379–3384 http://dx.doi.org/10.1016/j.biomaterials.2004.09.017CrossrefGoogle Scholar

  • [13] Sader M.S., LeGeros R.Z., Soares G.A., Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets, J. Mater. Sci. Mater. Med., 2009, 20, 521–527 http://dx.doi.org/10.1007/s10856-008-3610-3CrossrefGoogle Scholar

  • [14] Tardei C., Grigore F., Pasuk I., Stoleriu S., The study of Mg2+/Ca2+ substitution of beta-tricalcium phosphate, J. Optoelectron. Adv. Mat., 2006, 8, 568–571 Google Scholar

  • [15] Ge Z., Jin Z., Cao T., Manufacture ofdegradable polymeric scaffolds for bone regeneration, Biomed. Mater., 2008, 3, 022001–022011 http://dx.doi.org/10.1088/1748-6041/3/2/022001CrossrefGoogle Scholar

  • [16] Chen Y.S., Kuo S.M., Yao C.H., A review for gelatin used for artificial nerve and bone implants, 2009, BioMed. Eng-App. Bas. C., 21, 233–238 http://dx.doi.org/10.4015/S1016237209001313CrossrefGoogle Scholar

  • [17] Swetha M., Sahithi K., Moorthi A., Srinivasan N., Ramasamy K., Selvamurugan N., Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering, Int. J. Biol. Macromol., 2010, 47, 1–4 http://dx.doi.org/10.1016/j.ijbiomac.2010.03.015CrossrefGoogle Scholar

  • [18] Hunt N.C., Grover L.M., Cell encapsulation using biopolymer gels for regenerative medicine, Biotechnol. Lett., 2010, 32, 733–742 http://dx.doi.org/10.1007/s10529-010-0221-0CrossrefGoogle Scholar

  • [19] Oprita E.I., Moldovan L., Craciunescu O., Zarnescu O., A bioactive collagen-beta tricalcium phosphate scaffold for tissue engineering, Cent. Eur. J. Biol., 2006, 1, 61–72 http://dx.doi.org/10.2478/s11535-006-0005-7CrossrefGoogle Scholar

  • [20] Craciunescu O., Moldovan L., Tardei Ch., Sbarcea G., Carbodiimide cross-linked nanocomposite materials designed for bone tissue regeneration, Mater. Plast., 2010, 47, 59–63 Google Scholar

  • [21] Moldovan L., Oprita E.I., Craciunescu O., Tardei C., Bojin D., Zarnescu O., Histochemical and scanning electron microscopic characterization of tricalcium phosphate-collagen conjugated sponges, Rom. Biotechnol. Lett., 2004, 9, 1887–1893 Google Scholar

  • [22] Pieper J.S., van der Kraan P.M., Hafmans T., Kamp J., Buma P., van Susante J.L.C., et al., Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering, Biomaterials, 2002, 23, 3183–3192 http://dx.doi.org/10.1016/S0142-9612(02)00067-4CrossrefGoogle Scholar

  • [23] Barnes C.P., Pemble IV C.W., Brand D.D., Simpson D.G., Bowlin G.L., Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol, Tiss. Eng., 2007, 13, 1593–1605 http://dx.doi.org/10.1089/ten.2006.0292CrossrefGoogle Scholar

  • [24] Zhang S.M., Cui F.Z., Liao S.S., Zhu Y., Han L., Synthesis and biocompatibility of porous nano-HA/collagen/alginate composite, J. Mater. Sci. Mater. Med., 2003, 14, 641–645 http://dx.doi.org/10.1023/A:1024083309982CrossrefGoogle Scholar

  • [25] Gu Q., Zhu H.M., Zhang X.J., Apoptosis of rat osteoblasts in process of calcification in vitro, Acta Pharmacol. Sin., 2002, 23, 808–812 Google Scholar

  • [26] Oprita E.I., Moldovan L., Craciunescu O., Zarnescu O., In vitro behaviour of osteoblast cells seeded into a COL/β-TCP composite scaffold, Cent. Eur. J. Biol., 2008, 3, 31–37 http://dx.doi.org/10.2478/s11535-007-0047-5CrossrefGoogle Scholar

  • [27] Mossman T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays, J. Immunol. Meth., 1983, 65, 55–63 http://dx.doi.org/10.1016/0022-1759(83)90303-4CrossrefGoogle Scholar

  • [28] Webster T.J., Siegel R.W., Bizios R., Osteoblast adhesion on nanophase ceramics, Biomaterials, 1999, 20, 1221–1227 http://dx.doi.org/10.1016/S0142-9612(99)00020-4CrossrefGoogle Scholar

  • [29] Landi E., Logroscino G., Proietti L., Tampieri A., Sandri M., Sprio S., Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behavior, J. Mater. Sci. Mater. Med., 2008, 19, 239–247 http://dx.doi.org/10.1007/s10856-006-0032-yCrossrefGoogle Scholar

  • [30] Zarnescu O., Craciunescu O., Moldovan L., Collagen-chondroitin sulphate-hydroxyapatite porous composites: a histochemical and electron microscopy approach, Microsc. Microanal., 2010, 16, 137–142 http://dx.doi.org/10.1017/S1431927609991346CrossrefGoogle Scholar

  • [31] Tampieri A., Sandri M., Landi E., Pressato D., Francioli S., Quarto R., et al., Design of graded biomimetic osteochondral composite scaffolds, Biomaterials, 2008, 29, 3539–3546 http://dx.doi.org/10.1016/j.biomaterials.2008.05.008CrossrefGoogle Scholar

  • [32] Karageorgiou V., Kaplan D., Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 2005, 26, 5474–5491 http://dx.doi.org/10.1016/j.biomaterials.2005.02.002CrossrefGoogle Scholar

  • [33] Boland F.D., Espy P.G., Bowlin G.L., Tissue engineering scaffolds, In: Bowlin G.L., Wnek G., (Eds.), Encyclopedia of biomaterials and biomedical engineering, Marcel Dekker Inc., New York, 2004 Google Scholar

  • [34] Fang B., Wan Y.-Z., Tang T.-T., Gao C., Dai K.-R., Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds, Tiss. Eng., 2009, 15, 1091–1098 http://dx.doi.org/10.1089/ten.tea.2008.0110CrossrefGoogle Scholar

  • [35] Douglas T., Hemper U., Mietrach C., Viola M., Vigetti D., Heinemann S., et al., Influence of collagen-fibril-based coatings containing decorin and biglycan on osteoblast behavior, J. Biomed. Mater. Res., 2008, 84, 805–816 http://dx.doi.org/10.1002/jbm.a.31501CrossrefGoogle Scholar

About the article

Published Online: 2011-04-27

Published in Print: 2011-06-01


Citation Information: Open Life Sciences, Volume 6, Issue 3, Pages 301–311, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-011-0012-1.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Nina Nicoleta Condurache, Iuliana Aprodu, Oana Crăciunescu, Rodica Tatia, Georgiana Horincar, Vasilica Barbu, Elena Enachi, Gabriela Râpeanu, Gabriela Elena Bahrim, Anca Oancea, and Nicoleta Stănciuc
Food and Bioprocess Technology, 2019
[2]
Ammar Z. Alshemary, Muhammed Akram, Yi-Fan Goh, Usman Tariq, Faheem K. Butt, Ahmad Abdolahi, and Rafaqat Hussain
Ceramics International, 2015, Volume 41, Number 9, Page 11886
[3]
Kristine Salma-Ancane, Liga Stipniece, Andris Putnins, and Liga Berzina-Cimdina
Ceramics International, 2015, Volume 41, Number 3, Page 4996
[4]
Nicole Ostrowski, Boeun Lee, Daeho Hong, P. Nathan Enick, Abhijit Roy, and Prashant N. Kumta
ACS Biomaterials Science & Engineering, 2015, Volume 1, Number 1, Page 52

Comments (0)

Please log in or register to comment.
Log in