Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 6, Issue 3


Volume 10 (2015)

Combined action of X-rays and nonylphenol on mouse sperm

Małgorzata Dobrzyńska
  • Department of Radiation Protection and Radiobiology, National Institute of Public Health — National Institute of Hygiene, 00-791, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-04-27 | DOI: https://doi.org/10.2478/s11535-011-0021-0


The aim of this study was to assess the effects of 2-weeks’ X-ray and/or nonylphenol (NP) exposure on male mice’s sperm count and quality. Pzh:SFIS mice were exposed to X-rays (0.05 Gy, 0.10 Gy, 0.20 Gy) or to nonylphenol (25 mg/kg bw, 50 mg/kg bw, 100 mg/kg bw) or to both agents (0.05 Gy + 25 mg/kg bw NP, 0.10 Gy + 50 mg/kg bw NP). At 24 h and 5 weeks after the end of exposure the sperm count, morphology and frequency of DNA damage in the male germ cells were estimated. Each agent alone diminished sperm count and morphology. The dose of 0.05 Gy of X-rays decreased the frequency of DNA damage. Combined exposure to lower doses of both agents significantly improved sperm morphology and decreased the level of DNA damage compared to one agent alone. Combined exposure to higher doses reduced the frequency of DNA damage compared to the effect of the appropriate dose of NP. Results of combined exposure to low doses of both agents suggest that 0.05 Gy of X-rays stimulate the DNA damagecontrol system and in consequence repair of DNA caused by X-rays and NP. It may be correlated with increased antioxidant capacity.

Keywords: Sperm count and morphology; Dna damage; X-Rays; Nonylphenol; Combined exposure

  • [1] Bonde J.P., Giwercman A., Occupational hazards to male fecundity, Reprod. Med. Rev., 1995, 4, 59–73 http://dx.doi.org/10.1017/S096227990000106XCrossrefGoogle Scholar

  • [2] Carlsen E., Giwercman A., Keiding N., Skakkebaek N.E., Evidence for decreasing quality of semen during the past 50 years, Br. Med. J., 1992, 305, 609–612 http://dx.doi.org/10.1136/bmj.305.6854.609CrossrefGoogle Scholar

  • [3] Toppari J., Larsen J.C., Christiansen P., Giwercman A., Grandjean P., Guilette L.J. Jr., et al., Male reproductive health and environmental xenoestrogens, Environ. Health Perspect., 1996, 104, 741–803 http://dx.doi.org/10.2307/3432709CrossrefGoogle Scholar

  • [4] Aitken R.J., Koopman P., Lewis S.E., Seeds of concern, Nature, 2004, 432, 48–52 http://dx.doi.org/10.1038/432048aCrossrefGoogle Scholar

  • [5] Sharpe R.M., Toxicity of spermatogenesis and its detection, In: Korack K.S., (Ed.), Reproductive and developmental toxicology, Marcel Dekker, New York, 1998 Google Scholar

  • [6] Chitra K.C., Latchoumycandane C., Mathur P.P., Effect of nonylphenol on the antioxidant system in epididymal sperm of rats, Arch. Toxicol., 2002, 76, 545–551 http://dx.doi.org/10.1007/s00204-002-0372-4CrossrefGoogle Scholar

  • [7] Kimura N., Kimura T., Suzuki M., Totsukawa K., Effect of gestational exposure to nonylphenol on the development and fertility of mouse offspring, J. Reprod. Dev., 2006, 52, 789–795 http://dx.doi.org/10.1262/jrd.18007CrossrefGoogle Scholar

  • [8] Hale R.C., Smith C.L., de Fur P.O., Harvey E., Bush E.O., La Gaurdia L.J., et al., Nonylphenols in sediments and effluents associated with diverse wastewater outfalls, Environ. Sci. Technol., 2000, 19, 946–952 Google Scholar

  • [9] Lee P.C., Distribution of male reproductive tract development by administration of the xenoestrogen, nonylphenol to male newborn rats, Endocrine, 1998, 9, 105–111 http://dx.doi.org/10.1385/ENDO:9:1:105CrossrefGoogle Scholar

  • [10] Weber L.P., Kiparissis Y., Hwang G.S., Niimi A.J., Jantz D.M., Increased cellular apoptosis after chronic aqueous exposure to nonylphenol and quercetin in adult medaka (Oryzias latipes), Comp. Biochem. Physiol., 2002, 131, 51–59 Google Scholar

  • [11] Cardinalli M., Maradonna F, Olivotto I., Bartoluzzi G., Mosconi G., Polzonetti-Magni A.M., et al., Temporary impairment of reproduction in freshwater teleost exposed to nonylphenol, Reprod. Toxicol., 2004, 18, 597–604 CrossrefGoogle Scholar

  • [12] Giger W., Brunner P.H., Schaffner C., 4-nonylphenol in sewage sludge: accumulation of toxic metabolites from nonionic surfacants, Science, 1984, 225, 623–625 http://dx.doi.org/10.1126/science.6740328CrossrefGoogle Scholar

  • [13] Ahel M., McEvoy J., Giger W., Bioaccumulation of the lipophilic metabolites of nonionic surfacants in freshwater organisms, Environ. Pollut., 1993, 79, 243–248 http://dx.doi.org/10.1016/0269-7491(93)90096-7CrossrefGoogle Scholar

  • [14] Lee P.C., Disruption of male reproductive tract development by administration of the xenoestrogen, nonylphenol, to male newborn rats, Endocrine, 1998, 9, 105–111 http://dx.doi.org/10.1385/ENDO:9:1:105CrossrefGoogle Scholar

  • [15] De Jager C., Bornman M.S., Wandrag S., van der Horst D., Effect of p-nonylphenol, an environmental toxicant with oestrogenic properties, on fertility potential in adult male rats, Andrologia, 1999, 31, 99–106 http://dx.doi.org/10.1046/j.1439-0272.1999.00245.xCrossrefGoogle Scholar

  • [16] Committee on the Biological Effects on Ionizing Radiations, Board on Radiation Effects, Research Commission on Life Sciences, National Research Council, Biological Effects on Ionizing Radiation (BEIR), Health effects of exposure to low levels of ionizing radiation, National Academy Press, Washington, 1990 Google Scholar

  • [17] Collins B., Howard D., Allen J., Kinetochorestaining of spermatid micronulei: studies of mice treated with X-radiation or acrylamide, Mutat. Res., 1992, 281, 287–294 http://dx.doi.org/10.1016/0165-7992(92)90023-BCrossrefGoogle Scholar

  • [18] Dobrzyńska M.M., Gajewski A.K., Induction of micronuclei in bone marrow and sperm head abnormalities after combined exposure of mice to low doses of X-rays and acrylamide, Teratogen. Carcinogen. Mutagen., 2000, 20, 133–140 http://dx.doi.org/10.1002/(SICI)1520-6866(2000)20:3<133::AID-TCM4>3.0.CO;2-BCrossrefGoogle Scholar

  • [19] Rowley M.J., Leach D.R., Warner G.A., Heller C.G., Effect of graded doses of ionizing radiation on human testis, Radiat. Res., 1974, 58, 665–678 http://dx.doi.org/10.2307/3574084CrossrefGoogle Scholar

  • [20] Bonde J.P., Giwercman A., Occupational hazards to male fecundity, Reprod. Med. Rev., 1995, 4, 59–73 http://dx.doi.org/10.1017/S096227990000106XCrossrefGoogle Scholar

  • [21] Dobrzyńska M.M., The changes in the quantity and quality of semen following subchronic exposure of mice to irradiation, In: Cebulska-Wasilewska A., Au W.W., Sram R.J., (Eds.), Human Monitoring for Genetic Effects, IOS Press, Amsterdam, 2003 Google Scholar

  • [22] Searle A.G., Beechey C.V., Sperm count, eggfertilization and dominant lethality after X-irradiation of mice, Mutat. Res., 1974, 22, 69–74 CrossrefGoogle Scholar

  • [23] Singh N.P., Mc Coy M., Tice R.R., Schneider E.L., A simple technique for quantization of low level of DNA damage in individual cells, Exp. Cell Res., 1988, 175, 184–191 http://dx.doi.org/10.1016/0014-4827(88)90265-0CrossrefGoogle Scholar

  • [24] Anderson D., Yu T.W., Phillips B.J., Schmezer P., The effects of various antioxidants and other modifying agents on oxygen-radical-generated damage in human lymphocytes in Comet assay, Mutat. Res., 1994, 307, 261–271 Google Scholar

  • [25] Kumaravel T.S., Jha A.N., Reliable comet assay measurements for detecting DNA damage induced by ionizing radiation and chemicals, Mutat. Res., 2006, 605, 7–16 Google Scholar

  • [26] Wyrobek A.J., Bruce W.R. Chemical induction of sperm abnormalities in mice, Proc. Natl. Acad. Sci. USA, 1975, 72, 4425–4429 http://dx.doi.org/10.1073/pnas.72.11.4425CrossrefGoogle Scholar

  • [27] Destinger H., Jung H., Molecular Biology, Springer, Heidelberg, 1970 Google Scholar

  • [28] Sharpe R.M., Irvine D.S., How strong is the evidence of a link between environmental chemicals and adverse effects on human reproductive health?, Br. Med. J., 2004, 328, 447–451 http://dx.doi.org/10.1136/bmj.328.7437.447CrossrefGoogle Scholar

  • [29] Oberley L.W., Lindgren L.A., Baker S.A., Stevens R.H., Superoxide ion as the cause of the oxygen effect, Radiat. Res., 1976, 68, 320–328 http://dx.doi.org/10.2307/3574483CrossrefGoogle Scholar

  • [30] Biaglow J.E., Mitchell J.B., Heid K., The importance of peroxide and superoxide in the X-rays response, Int. J. Radiat. Oncol. Biol. Phys., 1992, 22, 665–669 http://dx.doi.org/10.1016/0360-3016(92)90499-8CrossrefGoogle Scholar

  • [31] Malekirad A.A., Ranjbar A., Rahzani K., Pilehvarian A.A., Rezaie A., Zamani M.J., et al., Oxidative stress in radiology staff, Environ. Toxicol. Pharmacol., 2005, 20, 215–218 http://dx.doi.org/10.1016/j.etap.2005.01.005CrossrefGoogle Scholar

  • [32] Tobin D.J., Swanson N.N., Pittelkow M.R., Peters E.M., Schallreuter K.V., Melanocytes are not absent in lesional skin of long duration vitiligo, J. Pathol., 2000, 191, 407–416 http://dx.doi.org/10.1002/1096-9896(2000)9999:9999<::AID-PATH659>3.0.CO;2-DCrossrefGoogle Scholar

  • [33] Anderson D., Cemeli E., Schmidt T.E., Baumgartner A., Brinkworth M.H., Wood J.M., Oestrogenic compounds and oxidative stress, In: Anderson D., Brinkworth M.H., (Eds.), Male mediated Developmental Toxicity, RSC Publishing, Cambridge, 2007 http://dx.doi.org/10.1039/9781847557643CrossrefGoogle Scholar

  • [34] Ochsendorf F.R., Buhl R., Bastlein A., Beschmann H., Glutathione in spermatozoa and seminal plasma of infertile men, Hum. Reprod., 1998, 13, 353–359 http://dx.doi.org/10.1093/humrep/13.2.353CrossrefGoogle Scholar

  • [35] Gong Y., Han X.D., Nonylphenol-induced oxidative stress and cytotoxicity in testicular Sertoli cells, Reprod. Toxiciol., 2006, 22, 623–630 http://dx.doi.org/10.1016/j.reprotox.2006.04.019CrossrefGoogle Scholar

  • [36] Chitra K.C., Latchoumycandane C., Mathur P.P., Effect of nonylphenol on the antioxidant system in epididymal sperm of rats, Arch. Toxicol., 2002, 76, 545–551 http://dx.doi.org/10.1007/s00204-002-0372-4CrossrefGoogle Scholar

  • [37] De Jager C., Bornman M.S., van der Horst G., The effect of p-nonylphenol, an environmental toxicant with oestrogenic properties, on fertility potential in adult male rats, Andrologia, 1999, 31, 99–106 http://dx.doi.org/10.1046/j.1439-0272.1999.00245.xCrossrefGoogle Scholar

  • [38] Lee P.C., Arnolt P., Nickels K.C., Testicular abnormalities in male rats after lactational exposure to nonylphenol, Endocrine, 1999, 11, 61–68 http://dx.doi.org/10.1385/ENDO:11:1:61CrossrefGoogle Scholar

  • [39] Zhang H., Zeng Y., Cheng W., Wu D., Adverse effects of nonylphenol on the reproductive function of adult male SD rats, Sichuan Da Xue Xue Bao Yi Xue Ban, 2003, 34, 292–297, (in Chinese, with English abstract) Google Scholar

  • [40] Nagao T., Saito Y., Usumii K., Nakagomi M., Yoshimura S., Ono H., Disruption of the reproductive system and reproductive performance by administration of nonylphenol to newborn rats, Hum. Exp. Toxicol., 2000, 19, 284–296 http://dx.doi.org/10.1191/096032700678815909CrossrefGoogle Scholar

  • [41] Nagao T., Wada K., Marumo H., Yoshimura S., Ono H., Reproductive effects of nonylphenol in rats after gavage administration: A two generation study, Reprod. Toxicol., 2001, 15, 293–315 http://dx.doi.org/10.1016/S0890-6238(01)00123-XCrossrefGoogle Scholar

  • [42] Tyl R.W., Myers C.B, Marr M.C., Castilo N.P., Seely J.C., Sloan C.S., et al., Three-generation evaluation of dietary para-nonylphenol in CD (Sprague-Dawley) rats, Toxicol. Sci., 2006, 92, 295–310 http://dx.doi.org/10.1093/toxsci/kfj203CrossrefGoogle Scholar

  • [43] Liu G., Gong P., Zhao H., Wang Z., Gong S., Cai L., Effect of low-level radiation on the death of male germ cells, Radiat. Res, 2006, 165, 379–389 http://dx.doi.org/10.1667/RR3528.1CrossrefGoogle Scholar

  • [44] Hasegawa G., Wilson L.D., Russell L.D., Meistrich M.L., Radiation-induced cell death in the mouse testis: Relationship to apoptosis, Radiat. Res., 1997, 147, 457–467 http://dx.doi.org/10.2307/3579503CrossrefGoogle Scholar

  • [45] Hasegawa G., Zhang Y., Niibe H., Tery N.H., Meistrich M.L., Resistance of diferentiating spermatogonia to radiation-induced apoptosis and loss in p53-deficient mice, Radiat. Res., 1998, 149, 263–270 http://dx.doi.org/10.2307/3579959CrossrefGoogle Scholar

  • [46] Yin Y., Stahl B.C., DeWolf W.C., Morgentaler A., P53 mediated germ cell quality control in spermatogenesis, Dev. Biol., 1998, 204, 165–171 http://dx.doi.org/10.1006/dbio.1998.9074CrossrefGoogle Scholar

  • [47] Kangasniemi M., Veromas T., Kulmala J., Kaipia A., Parvinen M., Toppari J., DNA-flow cutometry of defined stages of rat semiferous epithelium:effects of 3 Gy of high-energy X-irradiation, J. Androl., 1990, 11, 312–317 Google Scholar

  • [48] Otala M., Suomalainen L., Pentikainen M.O., Kovanen P., Tenhunen M., Erkkila K., et al., Protection from radiation-induced male germ cell loss by sphingosine-1-phosphate, Biol. Reprod., 2004, 70, 759–767 http://dx.doi.org/10.1095/biolreprod.103.021840Google Scholar

  • [49] Beumer T.L., Roepers-Gajadien H.L., Gaderman I.S., Rutgers D.H., Rooi D.G., P2(Cp1/WAF1) expression in the mouse testis before and after X-irradiation, Mol. Reprod. Dev., 1997, 47, 240–247 http://dx.doi.org/10.1002/(SICI)1098-2795(199707)47:3<240::AID-MRD2>3.0.CO;2-LCrossrefGoogle Scholar

  • [50] Beumer T.L., Roepers-Gajadien H.L., Gaderman I.S., vav Buul P.P.W., Gil-Gomez G., Rutgers D.H., et al., The role of the tumor suppressor p53 in spermatogenesis, Cell Death Differ., 1998, 5, 669–677 http://dx.doi.org/10.1038/sj.cdd.4400396CrossrefGoogle Scholar

  • [51] Haines G.A., Hendry J.H., Daniel C.P., Morris I.D., Increased levels of comet-detected spermatozoa DNA damage following in vivo isotopic- or X-raysirradiation of spermatogonia, Mutat. Res., 2001, 495, 21–32 Google Scholar

  • [52] Haines G.A., Hendry J.H., Daniel C.P., Morris I.D., Germ cell and dose-dependent DNA damage measured by comet assay in murine spermatozoa after testicular X-irradiation, Biol. Reprod., 2002, 67, 854–861 http://dx.doi.org/10.1095/biolreprod.102.004382CrossrefGoogle Scholar

  • [53] Pollycove M., Nonlinearity of radiation health effects, Environ. Health Perspect., 1998, 106, 363–369 http://dx.doi.org/10.2307/3433939CrossrefGoogle Scholar

  • [54] Pollycove M., Feinendegen L.E., Radiation reduced versus endogenous DNA damage possible effect of inducible protective responses in mitigating endogenous damage, Hum. Exp. Toxicol., 2003, 22, 290–306 http://dx.doi.org/10.1191/0960327103ht365oaCrossrefGoogle Scholar

  • [55] Masaki H., Atsumi T., Sakurai H., Detection of hydrogen peroxide and hydroxyl radicals in murine skin fibroblasts under UVB irradiation, Biochem. Biophys. Res. Commun., 1995, 206, 474–479 http://dx.doi.org/10.1006/bbrc.1995.1067CrossrefGoogle Scholar

  • [56] Goto R., Kubota T., Ibuki Y., Kaji K., Goto A., Degradation of nonylphenol polyethoxylates by ultraviolet B irradiation and effects of their products on mammalian cultured cells, Toxicology, 2004, 202, 237–247 http://dx.doi.org/10.1016/j.tox.2004.05.017CrossrefGoogle Scholar

About the article

Published Online: 2011-04-27

Published in Print: 2011-06-01

Citation Information: Open Life Sciences, Volume 6, Issue 3, Pages 320–329, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-011-0021-0.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Małgorzata M. Dobrzyńska
Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2014, Volume 772, Page 14

Comments (0)

Please log in or register to comment.
Log in