Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 6, Issue 3


Volume 10 (2015)

Spatial and temporal distribution of mineral nutrients and sugars throughout the lifespan of Hibiscus rosa-sinensis L. flower

Alice Trivellini / Antonio Ferrante / Paolo Vernieri / Giulia Carmassi / Giovanni Serra
Published Online: 2011-04-27 | DOI: https://doi.org/10.2478/s11535-011-0025-9


Although the physiological and molecular mechanisms of flower development and senescence have been extensively investigated, a whole-flower partitioning study of mineral concentrations has not been carried out. In this work, the distribution of sucrose, total reducing sugars, dry and fresh weight and macro and micronutrients were analysed in Hibiscus rosa-sinensis L. petals, stylestigma including stamens and ovary at different developmental stages (bud, open and senescent flowers). Total reducing sugars showed the highest value in petals of bud flowers, then fell during the later stages of flower development whereas sucrose showed the highest value in petals of senescent flowers. In petals, nitrogen and phosphorus content increased during flower opening, then nitrogen level decreased in senescent flowers. The calcium, phosphorus and boron concentrations were highest in ovary tissues whatever the developmental stage. Overall, the data presented suggests that the high level of total reducing sugars prior the onset of flower opening contributes to support petal cells expansion, while the high amount of sucrose at the time of petal wilting may be viewed as a result of senescence. Furthermore, this study discusses how the accumulation of particular mineral nutrients can be considered in a tissue specific manner for the activation of processes directly connected with reproduction.

Keywords: Flower parts; Reducing sugars; Sucrose; Micronutrients; Macronutrients; Flower senescence; Remobilization; Osmoregulation

  • [1] Rogers H.J., Programmed cell death in floral organs: How and why do flowers die?, Ann. Bot., 2006, 97, 309–315 http://dx.doi.org/10.1093/aob/mcj051CrossrefGoogle Scholar

  • [2] Hoyer L., Critical ethylene exposure for Hibiscus rosa-sinensis is dependent on an interaction between ethylene concentration and duration, Postharvest Biol. Technol., 1996, 9, 87–95 http://dx.doi.org/10.1016/0925-5214(96)00027-0CrossrefGoogle Scholar

  • [3] Woodson W.R., Hanchey S.H., Chisholm D.N., Role of ethylene in the senescence of isolated hibiscus petals, Plant Physiol., 1985, 79, 679–683 http://dx.doi.org/10.1104/pp.79.3.679CrossrefGoogle Scholar

  • [4] Trivellini A., Vernieri P., Ferrante A., Serra G., Physiological Characterization of Flower Senescence in Long Life and Ephemeral Ibiscus (Hibiscus rosa-sinensis L.), Acta Hortic., 2007, 755, 457–464 Google Scholar

  • [5] Ho L.C, Nichols R., Translocation of 14C-sucrose in relation to changes in carbohydrate content in rose corollas cut at different stages of development, Ann. Bot., 1977, 41, 227–242 CrossrefGoogle Scholar

  • [6] Kaltaler R.E.L., Steponkus P.L., Uptake and metabolism of sucrose in cut roses, J. Am. Soc. Hortic. Sci., 1974, 99, 490–493 Google Scholar

  • [7] Ohyama A., Ito H., Sato T., Nishimura S., Imai T., Hirai M., Suppression of acid invertase activity by antisense rna modifies the sugar composition of tomato fruit, Plant Cell Physiol., 1995, 36, 369–376 CrossrefGoogle Scholar

  • [8] Tang G., Luscher M., Sturm A., Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning, Plant Cell, 1999, 11, 177–190 http://dx.doi.org/10.1105/tpc.11.2.177CrossrefGoogle Scholar

  • [9] Yamada K., Itoa M., Oyamaa T., Nakadaa M., Maesakaa M., Yamaki S., Analysis of sucrose metabolism during petal growth of cut roses, Postharvest Biol. Technol., 2007, 43, 174–177 http://dx.doi.org/10.1016/j.postharvbio.2006.08.009CrossrefGoogle Scholar

  • [10] Bieleski R.L., Fructan Hydrolysis Drives Petal Expansion in the Ephemeral Daylily Flower, Plant Physiol., 1993, 103, 213–219 CrossrefGoogle Scholar

  • [11] Monteiro J.A., Nell T.A., Barrett J.E., Effects of exogenous sucrose on carbohydrate levels, flower respiration and longevity of potted miniature rose (Rosa hybrida) flowers during postproduction, Postharvest Biol. Technol., 2002, 26, 221–229 http://dx.doi.org/10.1016/S0925-5214(02)00010-8CrossrefGoogle Scholar

  • [12] van Doorn W.G., Is petal senescence due to sugar starvation?, Plant Physiol., 2004, 134, 35–42 http://dx.doi.org/10.1104/pp.103.033084CrossrefGoogle Scholar

  • [13] Verlinden S., Changes in mineral nutrient concentrations in Petunia corollas during development and senescence, HortScience, 2003, 38, 71–74 Google Scholar

  • [14] Himelblau E., Amasino R.M., Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence, J. Plant Physiol., 2001, 158, 1317–1323 http://dx.doi.org/10.1078/0176-1617-00608CrossrefGoogle Scholar

  • [15] Page A.L., Miller R.H., Keeney D.R., Chemical and Microbiological Properties, In: Page A.L., (Ed.), Methods of Soil Analysis, 2nd Ed., American Society of Agronomy, USA, 1982 Google Scholar

  • [16] Kacar B., Chemical Analysis of Plant and Soil, University of Ankara, Ankara, 1972 Google Scholar

  • [17] Olsen S.R., Sommers E.L., Phosphorus, In: Page A.L., (Ed.), Methods of Soil Analysis, 2nd Ed., American Society of Agronomy, USA, 1982 Google Scholar

  • [18] Cataldo D.A., Haroon M., Sehrader L.E., Youngs V.L., Rapid colorimetric determination of nitrate in plant tissue by titration of salicylic acid, Commun. Soil Sci. Plant. Anal., 1975, 6, 71–80 http://dx.doi.org/10.1080/00103627509366547CrossrefGoogle Scholar

  • [19] Reid M.S., Wollenweber B., Serek M., Carbon balance and ethylene in the postharvest life of flowering hibiscus, Postharvest Biol. Technol., 2002, 25, 227–233 http://dx.doi.org/10.1016/S0925-5214(01)00168-5CrossrefGoogle Scholar

  • [20] van Doorn W.G., van Meeteren U., Flower opening and closure: a review, J. Exp. Bot., 2003, 54, 1801–1812 http://dx.doi.org/10.1093/jxb/erg213CrossrefGoogle Scholar

  • [21] Yap Y., Loh C., Ong B., Regulation of flower development in Dendrobium crumenatum by changes in carbohydrate contents, water status and cell wall metabolism, Sci. Hortic., 2008, 119, 59–66 http://dx.doi.org/10.1016/j.scienta.2008.06.029CrossrefGoogle Scholar

  • [22] Bieleski R.L., Ripperda J., Newman J.P., Reid M.S., Carbohydrate Changes and Leaf Blackening in Cut Flower Stems of Protea eximia, J. Amer. Soc. Hort. Sci., 1992, 117, 124–127 Google Scholar

  • [23] van Doorn W., Balk P.A., van Houwelingen A.M., Hoeberichts F.A, Hall R.D., Vorst O., et al., Gene expression during anthesis and senescence in Iris flowers, Plant Mol. Biol., 2003, 53, 845–863 http://dx.doi.org/10.1023/B:PLAN.0000023670.61059.1dCrossrefGoogle Scholar

  • [24] Bieleski R.L., Onset of phloem export from senescent petals of daylily, Plant Physiol., 1995, 109, 557–565 CrossrefGoogle Scholar

  • [25] Jones M.L., Stead A.D., Clark D.G., Petunia Flower Senescence, In: Gerats T., Strommer J., (Eds.), Petunia Evolutionary, Developmental and Physiological Genetics, 2nd Ed., Springer, Germany, 2009 Google Scholar

  • [26] Stead A.D., Pollination-induced flower senescence: a review, Plant Growth Regul., 1992, 11, 13–20 http://dx.doi.org/10.1007/BF00024427CrossrefGoogle Scholar

  • [27] Chapin L., Jones M.L., Nutrient remobilization during pollination-induced corolla senescence in petunia, Acta Hort., 2007, 755, 181–190 Google Scholar

  • [28] Stead A.D., van Doorn W.G., Jones M.L., Wagstaff C., Flower senescence: fundamental and applied aspects, In: Ainsworth C., (Ed.), Flowering and its Manipulation, Annual Plant Reviews, vol. 20, Blackwell Publishing, Oxford, 2006 Google Scholar

  • [29] Jones M.L., Changes in gene expression during senescence, In: Nooden L., (Ed.), Plant Cell Death Process, Elsevier Science, Netherlands, 2004 Google Scholar

  • [30] Jones M.L., Ethylene signaling is required for pollination-accelerated corolla senescence in petunias, Plant Sci., 2008, 175, 190–196 http://dx.doi.org/10.1016/j.plantsci.2008.03.011CrossrefGoogle Scholar

  • [31] Chapin L.J., Jones M.L., Ethylene regulates phosphorus remobilization and expression of a phosphate transporter (PhPT1) during petunia corolla senescence, J. Exp. Bot., 2009, 60, 2179–2190 http://dx.doi.org/10.1093/jxb/erp092CrossrefGoogle Scholar

  • [32] Trivellini A., Ferrante A., Vernieri P., Mensuali-Sodi A., Serra G., Effects of promoters and inhibitors of ethylene and ABA on flower senescence of Hibiscus rosa-sinensis, J. Plant Growth Regul., (in press), DOI: 10.1007/s00344-010-9181-9 CrossrefGoogle Scholar

  • [33] Xie Z., Jiang D., Dai T.B., Jing Q., Cao W.X., Effects of exogenous ABA and cytokinin on leaf photosynthesis and grain protein accumulation in wheat ears cultured in vitro, Plant Growth Regul., 2004, 44, 25–32 http://dx.doi.org/10.1007/s10725-004-1880-4CrossrefGoogle Scholar

  • [34] Cai C., Zhao X.Q., Zhu Y.G., Li B., Tong Y.P., Li Z.S., Regulation of the high-affinity nitrate transport system in wheat roots by exogenous abscisic acid and glutamine, J. Integr. Plant Biol., 2007, 49, 1719–1725 http://dx.doi.org/10.1111/j.1744-7909.2007.00485.xCrossrefGoogle Scholar

  • [35] Nichols R., Ho L.C., Effects of ethylene and sucrose on translocation of dry matter and 14c-sucrose in the cut flower of the glasshouse carnation (Dianthus caryophyllus) during senescence, Ann. Bot., 1975, 39, 287–296 CrossrefGoogle Scholar

  • [36] Pierson E.S., Miller D.D., Callaham D.A., van Aken J., Hackett G., Hepler P.K., Tip-localized calcium entry fluctuates during pollen tube growth, Dev. Biol., 1996, 174, 160–173 http://dx.doi.org/10.1006/dbio.1996.0060CrossrefGoogle Scholar

  • [37] Chudzik B., Sniezko R., Calcium ion presence as a trait of receptivity in tenuinucellar ovules of Galanthus nivalis L., Acta Biol. Cracov. Bot., 2003, 45, 133–141 Google Scholar

  • [38] Kurien A., Radhamany P.M., Differential recognition of self pollen and sterility in Hibiscus rosa-sinensis L. (Malvaceae), Adv. Pollen Spore Res., 2007, 25, 169–176 Google Scholar

  • [39] Tilton V.R., Horner H.T., Calcium oxalate raphide crystals and crystalliferous idioblasts in the carpels of Ornithogalum caudatum, Ann. Bot., 1980, 46, 533–539 CrossrefGoogle Scholar

  • [40] Okoli E., McEuen A.R., Calcium-containing crystals in Telfairia hooker (Cucurbitaceae), New Phytol., 1986, 102, 199–207 http://dx.doi.org/10.1111/j.1469-8137.1986.tb00810.xCrossrefGoogle Scholar

  • [41] Harrison C.R., Arditti J., Post-pollination phenomena in orchid flowers, VII. Phosphate movement among floral segments, Am. J. Bot., 1976, 63, 911–918 http://dx.doi.org/10.2307/2441748CrossrefGoogle Scholar

  • [42] Goldschmidt E.E., Huberman M., The coordination of organ growth in developing citrus flowers: a possibility for sink type regulation, J. Exp. Bot., 1974, 25, 534–541 http://dx.doi.org/10.1093/jxb/25.3.534CrossrefGoogle Scholar

  • [43] Germain H., Houdea J., Gray-Mitsumunea M., Sawasakib T., Endob Y., Rivoala J., et al., Characterization of ScORK28, a transmembrane functional protein receptor kinase predominantly expressed in ovaries from the wild potato species Solanum chacoense, FEBS Lett., 2007, 581, 5137–5142 http://dx.doi.org/10.1016/j.febslet.2007.10.001CrossrefGoogle Scholar

  • [44] Torii K.U., Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways, Int. Rev. Cytol., 2004, 234, 1–46 http://dx.doi.org/10.1016/S0074-7696(04)34001-5CrossrefGoogle Scholar

  • [45] Siedow J.N., Plant Lipoxygenase: structure and function, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1991, 42, 145–188 http://dx.doi.org/10.1146/annurev.pp.42.060191.001045CrossrefGoogle Scholar

  • [46] Kolomiets M.V., Hannapel D.J., Chen H., Tymeson M., Gladon R.J., Lipoxygenase is involved in the control of potato tuber development, Plant Cell, 2001, 13, 613–626 http://dx.doi.org/10.1105/tpc.13.3.613CrossrefGoogle Scholar

  • [47] Fukuchi-Mizutani M., Ishiguro K., Nakayama T., Utrunomiya Y., Yoshikazu T., Kusumi T., et al., Molecular and functional characterization of a rose lipoxygenase cDNA related to flower senescence, Plant Sci., 2000, 160, 129–137 http://dx.doi.org/10.1016/S0168-9452(00)00373-3CrossrefGoogle Scholar

  • [48] O’Neill M.A., Warrenfeltz D., Kates K., Pellerin P., Doco T., Darvill A.G., et al., Rhamnogalacturonan-II, a Pectic Polysaccharide in the Walls of Growing Plant Cell, Forms a Dimer That Is Covalently Crosslinked by a Borate Ester, J. Biol. Chem., 1996, 271, 22923–22930 http://dx.doi.org/10.1074/jbc.271.37.22923CrossrefGoogle Scholar

  • [49] Iwai H., Hokura A., Oishi M., Chida H., Ishii T., Sakai S., et al., The gene responsible for borate cross-linking of pectin Rhamnogalacturonan-II is required for plant reproductive tissue development and fertilization, Proc. Natl. Acad. Sci. USA, 2006, 103, 16592–16597 http://dx.doi.org/10.1073/pnas.0605141103CrossrefGoogle Scholar

  • [50] Bieleski R.L., Fructan Hydrolysis Drives Petal Expansion in the Ephemeral Daylily Flower, Plant Physiol., 1993, 103, 213–219 CrossrefGoogle Scholar

  • [51] Blom-Zandstra M., Lampe J.E.M., The Role of Nitrate in the Osmoregulation of Lettuce (Lactuca sativa L.) Grown at Different Light Intensities, J. Exp. Bot., 1985, 36, 1043–1052 http://dx.doi.org/10.1093/jxb/36.7.1043CrossrefGoogle Scholar

About the article

Published Online: 2011-04-27

Published in Print: 2011-06-01

Citation Information: Open Life Sciences, Volume 6, Issue 3, Pages 365–375, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-011-0025-9.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

M. Lucchesini, S. Pacifici, R. Maggini, A. Pardossi, and A. Mensuali Sodi
Plant Cell, Tissue and Organ Culture (PCTOC), 2018
Puneet Kaur and Dibakar Mukherjee
Acta Physiologiae Plantarum, 2013, Volume 35, Number 6, Page 1853

Comments (0)

Please log in or register to comment.
Log in