Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2017: 0.764
5-year IMPACT FACTOR: 0.787

CiteScore 2017: 0.88

SCImago Journal Rank (SJR) 2017: 0.271
Source Normalized Impact per Paper (SNIP) 2017: 0.545

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 6, Issue 4

Issues

Volume 10 (2015)

Polymorphisms of interleukin-4, -10 and 12B genes and diabetic retinopathy

Ines Cilenšek
  • Institute of Histology and Embryology, Medical Faculty of Ljubljana, University of Ljubljana, 1000, Ljubljana, Slovenia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Amela Hercegovac
  • Department of Biology and Human Genetics, University of Tuzla, Medical Faculty, 75000, Tuzla, Bosnia and Herzegovina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jovana Starčević
  • Institute of Histology and Embryology, Medical Faculty of Ljubljana, University of Ljubljana, 1000, Ljubljana, Slovenia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katarina Vukojević / Mirna Babić / Aleksandra Živin
  • Institute of Histology and Embryology, Medical Faculty of Ljubljana, University of Ljubljana, 1000, Ljubljana, Slovenia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-05-21 | DOI: https://doi.org/10.2478/s11535-011-0036-6

Abstract

In diabetic retinopathy (DR) and other angiogenesis-associated diseases, increased levels of cytokines, inflammatory cells, and angiogenic factors are present. We investigated the hypothesis that rs2243250 polymorphism of the interleukin 4 (IL-4) gene or rs1800896 polymorphism of the interleukin 10 (IL-10) gene, and rs3212227 polymorphism of the 3’ untranslated region (3’ UTR) of the interleukin-12 p40 gene (IL12B) may be associated with the development of proliferative diabetic retinopathy (PDR) in Caucasians with type 2 diabetes (DM2). This cross sectional case — control study included 189 patients with PDR and 187 patients with type 2 diabetes without PDR. Polymorphisms rs1800896 of the IL-10 gene, rs2243250 of the IL-4 gene, and rs3212227 of IL12B gene were analyzed by ARMS -PCR and RFLP -PCR methods. Multivariate analysis demonstrated the GG genotype of the rs1800896 polymorphism of the IL-10 gene to be associated with increased risk for PDR (OR=1.99; 95% CI=1.11–3.57; P=0.02), whereas the TT genotype of the rs2243250 polymorphism of the IL-4 gene and the AA genotype of the rs3212227 polymorphism of the IL-12 gene were not independent risk factors for PDR. Our findings suggest that the genetic variations at the IL-10 promoter gene might be a genetic risk factor for PDR in Caucasians with type 2 diabetes.

Keywords: Interleukin 4; Interleukin 10; Interleukin 12B; Gene polymorphism; Proliferative diabetic retinopathy

  • [1] Quresh M., Gillies M.C., Wong T.Y., Managment of Diabetic retinopathy, JAMA, 2007, 298, 902–916 http://dx.doi.org/10.1001/jama.298.8.902CrossrefGoogle Scholar

  • [2] Fong D.S., Aiello L., Gardner T.W., King G.L., Blankenship G., Cavallerno J.D., et al., Diabetic retinopathy, Diabetes care, 1998, 21, 143–156 Google Scholar

  • [3] Petrovic M.G., Osredkar J., Saraga-Babić M., Petrovic D., K469E polymorphism of the intracellular adhesion molecule 1 gene is associated with proliferative diabetic retinopathy in Caucasians with type 2 diabetes, Clin. Exp. Ophthalmol., 2008, 36, 468–472 http://dx.doi.org/10.1111/j.1442-9071.2008.01785.xCrossrefGoogle Scholar

  • [4] Petrovic M.G., Korosec P., Kosnik M., Osredkar J., Hawlina M., Peterlin B., et al., Local and genetic determinants of vascular endothelial growth factor expression in advanced proliferative diabetic retinopathy, Mol. Vis., 2008, 14, 1382–1387 Google Scholar

  • [5] Petrovic M.G., Krkovic M., Osredkar J., Hawlina M., Petrovic D., Polymorphisms in the promoter region of the basic fibroblast growth factor gene and proliferative diabetic retinopathy in Caucasians with type 2 diabetes, Clin. Exp. Ophthalmol., 2008, 36, 168–172 http://dx.doi.org/10.1111/j.1442-9071.2007.01647.xCrossrefGoogle Scholar

  • [6] Kariz S., Grabar D., Krkovic M., Osredkar J., Petrovic D., Polymorphisms in the promoter region of the basic fibroblast growth factor gene are not associated with myocardial infarction in a Slovene population with type 2 diabetes, J. Int. Med. Res., 2009, 37, 1596–1603 CrossrefGoogle Scholar

  • [7] Adamis A.P., Miller J.W., Bernal M.T., D’Amico D.J., Folkman J., Yeo T.K., Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy, Br. J. Ophtalmol., 2002, 86, 311–315 http://dx.doi.org/10.1136/bjo.86.4.363CrossrefGoogle Scholar

  • [8] Kern T.S., Contributions of inflammatory Processes to the development of the Early Stages of Diabetic Retinopathy, Exp. Diabetes Res., 2007, 95103, 1–14 http://dx.doi.org/10.1155/2007/95103CrossrefGoogle Scholar

  • [9] Petrovic M.G., Korosec P., Kosnik M., Hawlina M., Vitreous levels of interleukin-8 in patients with proliferative diabetic retinopathy, Am. J. Ophthalmol., 2007, 143, 175–176 http://dx.doi.org/10.1016/j.ajo.2006.07.032CrossrefGoogle Scholar

  • [10] Petrovic D., Vascular endothelial growth factor gene polymorphisms and myocardial infarction, Cardiology, 2009, 114, 8–10 http://dx.doi.org/10.1159/000210188CrossrefGoogle Scholar

  • [11] Petrovic D., Verhovec R., Globocnik Petrovic M., Osredkar J., Peterlin B., Association of vascular endothelial growth factor gene polymorphism with myocardial infarction in patients with type 2 diabetes, Cardiology, 2007, 107, 291–295 http://dx.doi.org/10.1159/000099064CrossrefGoogle Scholar

  • [12] Zorena K., Myśliwska J., Myśliwiec M., Balcerska A., Lipowski P., Raczyńska K., Interleukin-12 and tumour necrosis factor-alpha equilibrium is a prerequisite for clinical course free from late complications in children with type 1 diabetes mellitus, Scand. J. Immunol., 2008, 67, 204–208 http://dx.doi.org/10.1111/j.1365-3083.2007.02054.xCrossrefGoogle Scholar

  • [13] Hernandez C., Segura R.M., Fonollosa A., Carrasco E., Francisco G., Simo R., Interleukin −8 monocyte chemoattractant protein −1 and IL −10 in the vitreous fluid of patients with proliferative diabetic retinopathy, Diabetic Medicine, 2005, 22, 719–722 http://dx.doi.org/10.1111/j.1464-5491.2005.01538.xCrossrefGoogle Scholar

  • [14] Lin M.T., Storer B., Martin P.J., Tseng L.H., Gooley T., Chen P.J., et al., Relation of an interleukin — 10 promoter polymorphisms to graft — versus — host disease and survival afterhematopoietic — cell transplantation, N. Engl. J. Med., 2003, 349, 2201–2210 http://dx.doi.org/10.1056/NEJMoa022060CrossrefGoogle Scholar

  • [15] Turner D.M., Williams D.M., Sankaran D., Lazarus M., Sinnott P.J., Hutchinson I.V., An investigation of polymorphism in the interleukin −10 gene promoter, Eur. J. Immunogenet., 1997, 24, 1–8 http://dx.doi.org/10.1111/j.1365-2370.1997.tb00001.xCrossrefGoogle Scholar

  • [16] Lee J.H., Lee W., Kwon O.H., Kim J.H., Kwon O.W., Kim K.H., et al., Cytokine profile of peripheral blood in type 2 diabetes mellitus patients with diabetic retinopathy, Ann. Clin. Lab. Sci., 2008, 38, 361–367 Google Scholar

  • [17] Ozturk T.B., Bozkurt B., Kerimoglu H., Okka M., Kamis U., Gunduz K., Effect of serum cytokines and VEGF levels on diabetic retinopathy and macular thickness, Molecular Vision, 2009, 15, 1906–1914 Google Scholar

  • [18] Paffen E., Medina P., de Visser M.C., van Wijngaarden A., Zorio E., Estellés A., et al., The −589C>T polymorphism in the interleukin-4 gene (IL-4) is associated with a reduced risk of myocardial infarction in young individuals, J. Thromb. Haemost., 2008, 6, 1633–1638 http://dx.doi.org/10.1111/j.1538-7836.2008.03096.xGoogle Scholar

  • [19] Vairaktaris E., Yannopoulos A., Vassiliou S., Serefoglou Z., Vylliotis A., Nkenke E., et al., Strong association of interleukin −4 (−590C/T) with increased risk for oral squamos cell carcinoma in Europeans, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2007, 104,6, 796–802 http://dx.doi.org/10.1016/j.tripleo.2006.12.029CrossrefGoogle Scholar

  • [20] Vairaktaris E., Yapijakis C., Serefoglou Z., Avgoustidis D., Critselis E., Spyridonidou S., et al., Gene expression polymorphisms of interleukins −1β, −4, −6, −8, −10, and tumor necrosis factors −α, −β: — regression analysis of their effect upon oral squamous cell carcinoma, J. Cancer Res. Clin. Oncol., 2008, 134, 821–823 http://dx.doi.org/10.1007/s00432-008-0360-zCrossrefGoogle Scholar

  • [21] Volpert V.O., Fong T., Koch E.A., Peterson D.J., Waltenbaugh C., Tepper I.R., et al., Inhibition of Angiogenesis by Interleukin 4, J. Exp. Med., 1998, 188, 1039–1046 http://dx.doi.org/10.1084/jem.188.6.1039CrossrefGoogle Scholar

  • [22] Morahan G., McKinnon E., Berry J., Browning B., Julier C., Pociot F., et al., Evaluation of IL12B as a candidate type I diabetes susceptibility gene using data from the Type I Diabetes Genetics Consortium, Genes Immun., 2009, 10, S64–S68 http://dx.doi.org/10.1038/gene.2009.94CrossrefGoogle Scholar

  • [23] Huang D., Cancilla M.R., Morahan G., Complete primary structure, chromosomal localisation, and definition of polymorphisms of the gene encoding the human interleukin-12 p40 subunit, Genes Immun., 2000, 1, 515–520 http://dx.doi.org/10.1038/sj.gene.6363720CrossrefGoogle Scholar

  • [24] Mattner F., Fischer S., Guckes S., Jin S., Kaulen H., Schmitt E., et al., The interleukin-12 subunit p40 specifically inhibits effects of the interleukin-12 heterodimer, Eur. J. Immunol., 1993, 23, 2202–2208 http://dx.doi.org/10.1002/eji.1830230923CrossrefGoogle Scholar

  • [25] Hall M.A., McGlinn E., Coakley G., Fisher S.A., Boki K., Middleton D., et al., Genetic polymorphism of IL-12 p40 gene in immune-mediated disease, Genes Immun., 2000, 1, 219–224 http://dx.doi.org/10.1038/sj.gene.6363661CrossrefGoogle Scholar

  • [26] Morahan G., Huang D.X., Ymer S.I., Cancilla M.R., Stephen K., Dabadghao P., et al., Linkage disequilibrium of a type 1 diabetes susceptibility locus with a regulatory IL12B allele, Nat. Genet., 2001, 27, 218–221 http://dx.doi.org/10.1038/84872CrossrefGoogle Scholar

  • [27] Perrey C., Pravica V., Sinnott P.J., Hutchinson I.V., Genotyping for polymorphisms in interferon-gamma, interleukin-10, transforming growth factor-beta 1 and tumour necrosis factor-alpha genes: a technical report, Transpl. Immunol., 1998, 6, 193–197 http://dx.doi.org/10.1016/S0966-3274(98)80045-2CrossrefGoogle Scholar

  • [28] Bergholdt R., Ghandil P., Johannesen J., Kristiansen O.P., Kockum I., Luthman H., et al., Genetic and functional evaluation of an interleukin-12 polymorphism (IDDM18) in families with type 1 diabetes, J. Med. Genet., 2004, 41, e39 http://dx.doi.org/10.1136/jmg.2003.010454CrossrefGoogle Scholar

  • [29] Mtiraoui N., Ezzidi I., Kecem M., Mohamed M.B.H., Chaieb M., Jilani A.B.H., et al., Predictive value of interleukin 10 promoter genotypes and haplotypes in determining the susceptibility to nephropathy in type 2 diabetes patients, Diabetes Metab. Res. Rev., 2008, 25, 57–63 http://dx.doi.org/10.1002/dmrr.892CrossrefGoogle Scholar

  • [30] Myśliwska J., Zorena K., Semetkowska-Jurkiewicz E., Rachoń D., Suchanek H., Myśliwski A., High levels of circulating interleukin-10 in diabetic nephropathy patients, Eur. Cytokine Netw., 2005, 16, 117–122 Google Scholar

  • [31] Dace D.S., Khan A.A., Kelly J., Apte R.S., Interleukin-10 Promotes Pathological Angiogenesis by Regulating Macrophage Response to Hypoxia during Development, PLoS One., 2009, 4, e7121 http://dx.doi.org/10.1371/journal.pone.0007121CrossrefGoogle Scholar

  • [32] Lee I.Y., Kim J., Ko E.M., Jeoung E.J., Kwon Y.G., Choe J., Interleukin-4 inhibits the vascular endothelial growth factor- and basic fibroblast growth factor-induced angiogenesis in vitro, Mol. Cells., 2002, 14, 115–121 Google Scholar

  • [33] Toi M., Harris A.L., Bicknell R., Interleukin-4 is a potent mitogen for capillary endothelium, Biochem. Biophys. Res. Commun., 1991, 174, 1287–1293 http://dx.doi.org/10.1016/0006-291X(91)91561-PCrossrefGoogle Scholar

  • [34] Fukushi J., Morisaki T., Shono T., Nishie A., Torisu H., Ono M., et al., Novel biological functions of interleukin-4: formation of tube-like structures by vascular endothelial cells in vitro and angiogenesis in vivo, Biochem. Biophys. Res. Commun., 1998, 250, 444–448 http://dx.doi.org/10.1006/bbrc.1998.9334CrossrefGoogle Scholar

  • [35] Boyle D.L., Nguyen K.H., Zhuang S., Shi Y., McCormack J.E., Chada S., et al., Intra-articular IL-4 gene therapy in arthritis: anti-inflammatory effect and enhanced th2activity, Gene Ther., 1999, 12, 1911–1918 http://dx.doi.org/10.1038/sj.gt.3301049Google Scholar

  • [36] Hillman G.G., Younes E., Visscher D., Ali E., Lam J.S., Montecillo E., Systemic treatment with interleukin-4 induces regression of pulmonary metastases in a murine renal cell carcinoma model, Cell Immunol., 1995, 160, 257–263 http://dx.doi.org/10.1016/0008-8749(95)80036-ICrossrefGoogle Scholar

  • [37] Song Z., Casolaro V., Chen R., Georas S.N., Monos D., Ono S.J., Polymorphic nucletides within the human IL −4 promoter that mediate overexpression of the gene, J. Immunol., 1996, 156, 424–429 Google Scholar

  • [38] Seegers D., Zwiers A., Strober W., Peña A.S., Bouma G., A TaqI polymorphism in the 3’UTR of the IL-12 p40 gene correlates with increased IL-12 secretion, Genes Immun., 2002, 3, 419–423 http://dx.doi.org/10.1038/sj.gene.6363919CrossrefGoogle Scholar

  • [39] Sgadari C., Angiolillo A.L., Tosato G., Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10, Blood, 1996, 1, 3877–3882 Google Scholar

  • [40] Winkler G., Dworak O., Salamon F., Salamon D., Speer G., Cseh K., Increased interleukin-12 plasma concentrations in both, insulin-dependent and noninsulin-dependent diabetes mellitus, Diabetologia, 1998, 41, 488–494 http://dx.doi.org/10.1007/s001250050935CrossrefGoogle Scholar

  • [41] Poulaki V., Qin W., Joussen A.M., Hurlbut P., Wiegand S.J., Rudge J., et al., Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1 and VEGF, J. Clin. Invest., 2002, 109, 805–815 CrossrefGoogle Scholar

  • [42] Davoodi-Semiromi A., Yang J.J., She J.X., IL-12p40 is associated with type 1 diabetes in Caucasian-American families, Diabetes, 2002, 51, 2334–2336 http://dx.doi.org/10.2337/diabetes.51.7.2334CrossrefGoogle Scholar

About the article

Published Online: 2011-05-21

Published in Print: 2011-08-01


Citation Information: Open Life Sciences, Volume 6, Issue 4, Pages 558–564, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-011-0036-6.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Khaled A. Hussein, Karishma Choksi, Sara Akeel, Saif Ahmad, Sylvia Megyerdi, Mohamed El-Sherbiny, Mohamed Nawaz, Ahmed Abu El-Asrar, and Mohamed Al-Shabrawey
Experimental Eye Research, 2014, Volume 125, Page 79

Comments (0)

Please log in or register to comment.
Log in