Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year

IMPACT FACTOR 2016 (Open Life Sciences): 0.448

CiteScore 2016: 1.02

SCImago Journal Rank (SJR) 2016: 0.329
Source Normalized Impact per Paper (SNIP) 2016: 0.621

Open Access
See all formats and pricing
More options …
Volume 6, Issue 4 (Aug 2011)


Properties of shrubforest edges: a case study from South Hungary

László Erdős / Róbert Gallé / Zoltán Bátori / Mónika Papp / László Körmöczi
Published Online: 2011-05-21 | DOI: https://doi.org/10.2478/s11535-011-0041-9


Knowledge on edge properties is important from a conservation perspective. Our study was carried out in the ancient vegetation mosaic of the Villány Mts, South-Hungary. Sampling was conducted along eight transects, each running from a rock sward through a shrubforest patch into another rock sward. Unlike most studies, we identified edge position objectively, using a moving split-window analysis. Five habitat types along each transect were distinguished: north-facing rock sward interior, north-facing edge, shrubforest interior, south-facing edge, and south-facing rock sward interior. In the forty 2 m2 plots, a total of 157 species were found. Species richness and Shannon-diversity of the edges was higher than those of the shrubforest interiors, but not significantly different from the rock swards. Cover did not differ significantly among habitat types. We found only a few edge-related species. No differences between differently-oriented edges were revealed. Species composition of the edges was influenced mostly by the rock sward matrix. We hypothesize that ecological conditions of the edges resemble those of the rock sward interiors. Thus, sward species can penetrate into shrubforest edges, entailing a similar composition of edges and rock swards, resulting in similar diversities. Edges might be viewed as refugia for valuable plants of rock swards.

Keywords: Natural edge; Edge effects; Edge diversity; Species richness; Edge-related species; Orientation; Matrix; Transect; Moving split-window; Villány Mts

  • [1] Yarrow M.M., Marín V.H., Toward conceptual cohesiveness: a historical analysis of the theory and utility of ecological boundaries and transition zones, Ecosystems, 2007, 10, 462–476 http://dx.doi.org/10.1007/s10021-007-9036-9CrossrefGoogle Scholar

  • [2] Kark S., van Rensburg B.J., Ecotones: marginal or central areas of transition?, Isr. J. Ecol. Evol., 2006, 52, 29–53 http://dx.doi.org/10.1560/IJEE.52.1.29CrossrefGoogle Scholar

  • [3] Ries L., Fletcher R.J. Jr., Battin J., Sisk T.D., Ecological responses to habitat edges: mechanisms, models, and variability explained, Annu. Rev. Ecol. Evol. Syst., 2004, 35, 491–522 http://dx.doi.org/10.1146/annurev.ecolsys.35.112202.130148CrossrefGoogle Scholar

  • [4] Strayer D.L, Power M.E., Fagan W.F., Pickett S.T.A., Belnap J., A classification of ecological boundaries, BioScience, 2003, 33, 723–729 http://dx.doi.org/10.1641/0006-3568(2003)053[0723:ACOEB]2.0.CO;2CrossrefGoogle Scholar

  • [5] Odum E.P., Fundamentals of Ecology, 3rd Ed., W.B. Saunders, Philadelphia, 1971 Google Scholar

  • [6] Pianka E.R., Evolutionary ecology, 3rd Ed., Harper and Row, New York, 1983 Google Scholar

  • [7] Chiras D.D., Environmental science: action for a sustainable future, 3rd Ed., Benjamin/Cummings, Redwood City, 1991 Google Scholar

  • [8] Risser P.G., The Status of the Science Examining Ecotones, BioScience, 1995, 45, 318–325 http://dx.doi.org/10.2307/1312492CrossrefGoogle Scholar

  • [9] Brown J.H., Gibson A.C., Biogeography, C.V. Mosby, St. Louis, 1983 Google Scholar

  • [10] van Leeuwen C.G., A relation theoretical approach to pattern and process in vegetation, Wentia, 1966, 15, 25–46 Google Scholar

  • [11] van der Maarel E., On the establishment of plant community boundaries, Ber. Deut. Bot. Ges., 1976, 89, 415–443 Google Scholar

  • [12] van der Maarel E., Ecotones and ecoclines are different, J. Veg. Sci., 1990, 1, 135–138 http://dx.doi.org/10.2307/3236065CrossrefGoogle Scholar

  • [13] Lloyd K.M., McQueen A.A.M., Lee B.J., Wilson R.C.B., Walker S., Wilson J.B., Evidence on ecotone concepts from switch, environmental and anthropogenic ecotones, J. Veg. Sci., 2000, 11, 903–910 http://dx.doi.org/10.2307/3236560CrossrefGoogle Scholar

  • [14] Stowe C.J., Kissling W.D., Ohlemüller R., Wilson J.B., Are ecotone properties scale-dependent? A test from a Nothofagus treeline in southern New Zealand, Community Ecol., 2003, 4, 35–42 http://dx.doi.org/10.1556/ComEc.4.2003.1.4CrossrefGoogle Scholar

  • [15] Zólyomi B., Coenotone, ecotone and their role in preserving relic species, Acta Bot. Hung., 1987, 33, 3–18 Google Scholar

  • [16] Young A., Mitchell N., Microclimate and vegetation edge effects in a fragmented Podocarp-broadleaf forest in New Zealand, Biol. Conserv., 1994, 67, 63–72 http://dx.doi.org/10.1016/0006-3207(94)90010-8CrossrefGoogle Scholar

  • [17] Chen J., Franklin J.F., Spies T.A., Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests, Ecol. Appl., 1995, 5, 74–86 http://dx.doi.org/10.2307/1942053CrossrefGoogle Scholar

  • [18] Gehlhausen S.M., Schwartz M.W., Augspurger C.K., Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments, Plant Ecol., 2000, 147, 21–35 http://dx.doi.org/10.1023/A:1009846507652CrossrefGoogle Scholar

  • [19] Harper K.A., MacDonald S.E., Burton P.J., Chen J., Brosofske K.D., Saunders S.C., et al., Edge influence on forest structure and composition in fragmented landscapes, Conserv. Biol., 2005, 19, 768–782 http://dx.doi.org/10.1111/j.1523-1739.2005.00045.xCrossrefGoogle Scholar

  • [20] Jules E.S., Shahani P., A broader ecological context to habitat fragmentation: Why matrix habitat is more important than we thought, J. Veg. Sci., 2003, 14, 459–464 http://dx.doi.org/10.1111/j.1654-1103.2003.tb02172.xCrossrefGoogle Scholar

  • [21] Kupfer J.A., Malanson G.P., Franklin S.B., Not seeing the ocean for the islands: the mediating influence of matrix-based processes on forest fragmentation effects, Global Ecol. Biogeogr., 2006, 15, 8–20 http://dx.doi.org/10.1111/j.1466-822X.2006.00204.xCrossrefGoogle Scholar

  • [22] Matlack G.R., Vegetation dynamics of the forest edge — trends in space and successional time, J. Ecol., 1994, 82, 113–123 http://dx.doi.org/10.2307/2261391CrossrefGoogle Scholar

  • [23] Harper K.A., Macdonald S.E., Structure and composition of edges next to regenerating clearcuts in mixed-wood boreal forest, J. Veg. Sci., 2002, 13, 535–546 http://dx.doi.org/10.1111/j.1654-1103.2002.tb02080.xCrossrefGoogle Scholar

  • [24] Santos A.M.M., Santos B.A., Are the vegetation structure and composition of the shrubby Caatinga free from edge influence?, Acta Bot. Bras., 2008, 22, 1077–1084 http://dx.doi.org/10.1590/S0102-33062008000400018CrossrefGoogle Scholar

  • [25] Armand A.D., Sharp and Gradual Mountain Timberlines as a Result of Species Interactions, In: Hansen A.J., Di Castri F., (Eds.), Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flows, Springer-Verlag, New York, 1992 Google Scholar

  • [26] Camarero J.J., Gutiérrez E., Fortin M.-J., Spatial patterns of plant richness across treeline ecotones in the Pyrenees reveal different locations for richness and tree cover boundaries, Global Ecol. Biogeogr., 2006, 15, 182–191 http://dx.doi.org/10.1111/j.1466-822X.2006.00211.xCrossrefGoogle Scholar

  • [27] Hufkens K., Scheunders P., Ceulemans R., Ecotones in vegetation ecology: methodologies and definitions revisited, Ecol. Res., 2009, 24, 977–986 http://dx.doi.org/10.1007/s11284-009-0584-7CrossrefGoogle Scholar

  • [28] Harris L.D., Edge effects and conservation of biotic diversity, Conserv. Biol., 1988, 2, 330–332 http://dx.doi.org/10.1111/j.1523-1739.1988.tb00196.xCrossrefGoogle Scholar

  • [29] Forman R.T.T., Land mosaics: the ecology of landscapes and regions, Cambridge University Press, Cambridge, 1995 Google Scholar

  • [30] Lovász Gy., A Baranyai-dombság, a Mecsek és a Villányi-hegység (Baranya Hills, Mecsek Mountains and Villány Mountains), In: Ádám L., Marosi S., Szilárd J., (Eds.), A Dunántúli-dombság (Dél-Dunántúl) (Transdanubian Hills (South Transdanubia)), Akadémiai Kiadó, Budapest, 1981, (in Hungarian) Google Scholar

  • [31] Szilárd J., Éghajlati adottságok (Climatic conditions), In: Ádám L., Marosi S., Szilárd J., (Eds.), A Dunántúli-dombság (Dél-Dunántúl) (Transdanubian Hills (South Transdanubia)), Akadémiai Kiadó, Budapest, 1981, (in Hungarian) Google Scholar

  • [32] Ambrózy P., Kozma F., Éghajlat (Climate), In: Marosi S., Somogyi S., (Eds.), Magyarország kistájainak katasztere II (Cadaster of the basic landscape units of Hungary II), MTA Földrajztudományi Kutató Intézet, Budapest, 1990, (in Hungarian) Google Scholar

  • [33] Horvát A.O., Papp L., A nagyharsányi Szársomlyón végzett mikroklímamérések eredményei (Results of the microclimate measurements made on Szársomlyó Mountain near Nagyharsány), Janus Pannonius Múz. Évk., 1964, 9, 43–51, (in Hungarian) Google Scholar

  • [34] Dénes A., A Mecsek és a Villányi-hegység karsztbokorerdői (Karst shrubforests of the Mecsek Mountains and of the Villány Mountains), Janus Pannonius Múz. Évk., 1995, 39, 5–31, (in Hungarian) Google Scholar

  • [35] Simon T., Entdeckung und Zönologie der Festuca dalmatica (Hack.) Richt. in Ungarn und ihr statistischer Vergleich mit ssp. pseudodalmatica (Kraj.) Soó (Discovery and coenology of Festuca dalmatica (Hack.) Richt. in Hungary and its statistical comparison with ssp. pseudodalmatica (Kraj.) Soó, Ann. Univ. Budapest, S. Biol., 1964, 7, 143–156, (in German) Google Scholar

  • [36] Dénes A., A Villányi-hegység Chrysopogono-Festucion dalmaticae társulásai (Chrysopogono-Festucion dalmaticae associations of the Villány Mountains), In: Csontos P., (Ed.), Sziklagyepek szünbotanikai kutatása (Ecological studies on rock swards), Scientia Kiadó, Budapest, 1998, (in Hungarian) Google Scholar

  • [37] Horvát A.O., A mecseki tájak erdei növénytársulásai (Forest associations of the Mecsek Mountains), Janus Pannonius Múz. Évk., 1963, 8, 33–53, (in Hungarian) Google Scholar

  • [38] Dénes A., A Villányi-hegység flóra- és vegetációkutatásának története, eredményeinek összefoglalása, különös tekintettel a védett és ritka fajok előfordulására (History of research on flora and vegetation in the Villány Mountains, a summary of results, with special regard to the occurence of rare and protected species), In: Uherkovich Á., (Ed.), A Villányi-hegység botanikai és zoológiai alapfelmérése (The flora, vegetation and fauna of the Villány Mountains), Baranya megyei Múzeumok Igazgatósága, Pécs, 2000, (in Hungarian) Google Scholar

  • [39] Szita L., Nagyharsány, Száz magyar falu könyvesháza Kht., Budapest, 2002, (in Hungarian) Google Scholar

  • [40] Reuter C., Baranya megye: Szársomlyó (Baranya county: Szársomlyó Mountain), In: Kopasz M., (Ed.), Védett természeti értékeink (Protected natural values in Hungary), Mezőgazdasági Kiadó, Budapest, 1976, (in Hungarian) Google Scholar

  • [41] Jakucs P., Dynamische Verbindung der Wälder und Rasen (Dynamic connections of forests and grasslands), Akadémiai Kiadó, Budapest, 1972, (in German) Google Scholar

  • [42] Borhidi A., Magyarország növénytársulásai (Plant associations of Hungary), Akadémiai kiadó, Budapest, 2003, (in Hungarian) Google Scholar

  • [43] Ludwig J.A., Cornelius J.M., Locating discontinuities along ecological gradients, Ecology, 1987, 68, 448–450 http://dx.doi.org/10.2307/1939277CrossrefGoogle Scholar

  • [44] Körmöczi L., On the sensitivity and significance test of biotic boundary detection, Community Ecol., 2005, 6, 75–81 http://dx.doi.org/10.1556/ComEc.6.2005.1.8CrossrefGoogle Scholar

  • [45] Palmer M.W., van der Maarel E., Variance in species richness, species association, and niche limitation, Oikos, 1995, 73, 203–213 http://dx.doi.org/10.2307/3545909CrossrefGoogle Scholar

  • [46] Horváth A., INFOTHEM program: new possibilities of spatial series analysis based on information theory methods, Tiscia, 1998, 31, 71–84 Google Scholar

  • [47] Bartha S., Kertész M., The importance of neutral-models in detecting interspecific spatial associations from ‚trainsect’ data, Tiscia, 1998, 31, 85–98 Google Scholar

  • [48] Horváth A., Makrai L., Variability of spatial dependence within a pioneer plant community, Tiscia, 2000, 32, 19–29 Google Scholar

  • [49] Zalatnai M., Körmöczi L., Tóth T., Community boundaries and edaphic factors in saline-sodic grassland communities along an elevation gradient, Tiscia, 2007, 36, 7–15 Google Scholar

  • [50] Crawley, M.J., The R Book, John Wiley, New York, 2007 http://dx.doi.org/10.1002/9780470515075CrossrefGoogle Scholar

  • [51] Hothorn T., Bretz F., Westfall P., Simultaneous Inference in General Parametric Models, Biometrical J., 2008, 50, 346–363 http://dx.doi.org/10.1002/bimj.200810425CrossrefGoogle Scholar

  • [52] Tichý L., JUICE, software for vegetation classification, J. Veg. Sci., 2002, 13, 451–453 http://dx.doi.org/10.1111/j.1654-1103.2002.tb02069.xCrossrefGoogle Scholar

  • [53] Tichý L., Chytrý M., Statistical determination of diagnostic species for site groups of unequal size, J. Veg. Sci. 2006, 17, 809–818 CrossrefGoogle Scholar

  • [54] Hammer Ř., Harper D.A.T., Ryan P.D., PAST: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontol. Electron., 2001, http://palaeo-electronica.org/2001_1/past/issue1_01.htm Google Scholar

  • [55] Brothers T.S., Spingarn A., Forest fragmentation and alien plant invasion of Central Indiana old-growth forests, Conserv. Biol., 1992, 6, 91–100 http://dx.doi.org/10.1046/j.1523-1739.1992.610091.xCrossrefGoogle Scholar

  • [56] Oosterhoorn M., Kappelle M., Vegetation structure and composition along an interior-edge-exterior gradient in a Costa Rican montane cloud forest, Forest Ecol. Manag., 2000, 126, 291–307 http://dx.doi.org/10.1016/S0378-1127(99)00101-2CrossrefGoogle Scholar

  • [57] Dutoit T., Buisson E., Gerbaud E., Roche P., Tatoni T., The status of transitions between cultivated fields and their boundaries: ecotones, ecoclines or edge effects?, Acta Oecol., 2007, 31, 127–136 http://dx.doi.org/10.1016/j.actao.2006.03.010CrossrefGoogle Scholar

  • [58] Oliveira M.A., Grillo A.S., Tabarelli M., Forest edges in the Brazilian Atlantic forest: drastic changes in tree species assemblages, Oryx, 2004, 38, 389–394 http://dx.doi.org/10.1017/S0030605304000754CrossrefGoogle Scholar

  • [59] Günter S., Weber M., Erreis R., Aguirre N., Influence of distance to forest edges on natural regeneration of abandoned pastures: a case study in the tropical mountain rain forest of Southern Ecuador, Eur. J. Forest Res., 2007, 126, 67–75 http://dx.doi.org/10.1007/s10342-006-0156-0CrossrefGoogle Scholar

  • [60] De Casenave J.L, Pelotto J.P., Protomastro J., Edge-interior differences in vegetation structure and composition in a Chaco semi-arid forest, Argentina, Forest Ecol. Manag., 1995, 72, 61–69 http://dx.doi.org/10.1016/0378-1127(94)03444-2CrossrefGoogle Scholar

  • [61] Gonzalez M., Ladet S., Deconchat M., Cabanettes A., Alard D., Balent G., Relative contribution of edge and interior zones to patch size effect on species richness: An example for woody plants, Forest Ecol. Manag., 2010, 259, 266–274 http://dx.doi.org/10.1016/j.foreco.2009.10.010CrossrefGoogle Scholar

  • [62] Baez S., Balslev H., Edge effects on palm diversity in rain forest fragments in western Ecuador, Biodivers. Conserv., 2007, 16, 2201–2211 http://dx.doi.org/10.1007/s10531-007-9159-5CrossrefGoogle Scholar

  • [63] Łuczaj Ł., Sadowska B., Edge effects of different groups of organisms: vascular plants, bryophyte and fungi species richness across a forest-grassland border, Folia Geobot. Phytotax., 1997, 32, 343–353 CrossrefGoogle Scholar

  • [64] Walker S., Wilson J.B., Steel J.B., Rapson G.L., Smith B., King W. McG., et al., Properties of ecotones: Evidence from five ecotones objectively determined from a coastal vegetation gradient, J. Veg. Sci., 2003, 14, 579–590 http://dx.doi.org/10.1111/j.1654-1103.2003.tb02185.xCrossrefGoogle Scholar

  • [65] Tilman D., Pacala S., The Maintenance of Species Richness in Plant Communities, In: Ricklefs R.E., Schluter D., (Eds.), Species Diversity in Ecological Communities, University of Chicago Press, Chicago, 1993 Google Scholar

  • [66] Mészáros I., Jakucs P., Précsényi P., Diversity and niche changes of shrub species within forest margin, Acta Bot. Hung., 1981, 27, 421–437 Google Scholar

  • [67] Auclair A.N., Goff F.G., Diversity relations of upland forests in the western Great Lakes area, Am. Nat., 1971, 105, 499–528 http://dx.doi.org/10.1086/282742CrossrefGoogle Scholar

  • [68] Dierschke H., Saumgesellschaften im Vegetations- und Standortsgefälle an Waldrändern (Edge communities at vegetation and habitat gradients in forest edges), Script. Geobot., 1974, 6, 1–246, (in German) Google Scholar

  • [69] Papp M., A csáfordjánosfai tölgy-kőris-szil ligeterdő szegélyének fa- és cserjefaj összetétele, valamint szerkezeti jellemzői (Tree and shrub composition and structural characteristics of the edge of an oak-elm-ash woodland near Csáfordjánosfa), Kitaibelia, 2008, 13, 185, (in Hungarian) Google Scholar

  • [70] Burton J.P., Effects of clearcut edges on trees in the Sub-boreal spruce zone of Northwest-Central British Columbia, Silva Fenn., 2002, 36, 329–352 Google Scholar

  • [71] Fraver S., Vegetation responses along edge-tointerior gradients in the mixed hardwood forests of the Roanoke River Basin, North Carolina, Conserv. Biol., 1994, 8, 822–832 http://dx.doi.org/10.1046/j.1523-1739.1994.08030822.xCrossrefGoogle Scholar

  • [72] Kivistö L., Kuusinen M., Edge effects on the epiphytic lichen flora of Picea abies in middle boreal Finland, Lychenologist, 2000, 32, 387–398 http://dx.doi.org/10.1006/lich.2000.0282CrossrefGoogle Scholar

  • [73] Hylander K., Aspect modifies the magnitude of edge effects on bryophyte growth in boreal forests, J. Appl. Ecol., 2005, 42, 518–525 http://dx.doi.org/10.1111/j.1365-2664.2005.01033.xCrossrefGoogle Scholar

  • [74] Nascimento H.E.M., Andrade A.C.S., Camargo J.L.C., Laurance W.F., Laurance S.G., Ribeiro J.E.L., Effects of the surrounding matrix on tree recruitment in Amazonian Forest Fragments, Conserv. Biol., 2006, 20, 853–860 http://dx.doi.org/10.1111/j.1523-1739.2006.00344.xCrossrefGoogle Scholar

About the article

Published Online: 2011-05-21

Published in Print: 2011-08-01

Citation Information: Open Life Sciences, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-011-0041-9.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Maxime Burst, Sandrine Chauchard, Jean-Luc Dupouey, Bernard Amiaud, and Bryan Foster
Journal of Vegetation Science, 2017, Volume 28, Number 3, Page 515
Csaba Tölgyesi, Márta Zalatnai, László Erdős, Zoltán Bátori, Nicole Rosemary Hupp, and László Körmöczi
Journal of Plant Ecology, 2015, Page rtv032
L. Erdős, Cs. Tölgyesi, M. Horzse, D. Tolnay, Á. Hurton, N. Schulcz, L. Körmöczi, A. Lengyel, and Z. Bátori
Ecological Complexity, 2014, Volume 17, Page 107
L. Erdős, R. Gallé, L. Körmöczi, and Z. Bátori
Community Ecology, 2013, Volume 14, Number 1, Page 48
Szilárd Szentes, Zsuzsanna Sutyinszki, Gábor Szabó, Zita Zimmermann, Judit Házi, Barnabás Wichmann, Levente Hufnágel, Károly Penksza, and Sándor Bartha
Open Life Sciences, 2012, Volume 7, Number 6

Comments (0)

Please log in or register to comment.
Log in