Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 6, Issue 5


Volume 10 (2015)

ATP binding cassette systems: structures, mechanisms, and functions

Anke Licht / Erwin Schneider
Published Online: 2011-09-02 | DOI: https://doi.org/10.2478/s11535-011-0054-4


ATP-binding cassette (ABC) systems are found in all three domains of life and in some giant viruses and form one of the largest protein superfamilies. Most family members are transport proteins that couple the free energy of ATP hydrolysis to the translocation of solutes across a biological membrane. The energizing module is also used to drive non-transport processes associated, e.g., with DNA repair and protein translation. Many ABC proteins are of considerable medical importance. In humans, dysfunction of at least eighteen out of 49 ABC transporters is associated with disease, such as cystic fibrosis, Tangier disease, adrenoleukodystrophy or Stargardt’s macular degeneration. In prokaryotes, ABC proteins confer resistance to antibiotics, secrete virulence factors and envelope components, or mediate the uptake of a large variety of nutrients. Canonical ABC transporters share a common structural organization comprising two transmembrane domains (TMDs) that form the translocation pore and two nucleotide-binding domains (NBDs) that bind and hydrolyze ATP. In this Mini-Review, we summarize recent structural and biochemical data obtained from both prokaryotic and eukaryotic model systems.

Keywords: ATP-binding cassette; Protein superfamily; Transport proteins; P-glycoprotein; Maltose transporter; ECF transporter; Prokaryotes; Eukaryotes; Disease

  • [1] Davidson, A.L., Dassa, E., Orelle, C., Chen, J., Structure, function, and evolution of bacterial ATP-binding cassette systems, Microbiol. Mol. Biol. Rev., 2008, 72, 317–364 http://dx.doi.org/10.1128/MMBR.00031-07CrossrefGoogle Scholar

  • [2] Vasiliou V., Konstandinos Vasiliou K., Nebert D.W., Human ATP-binding cassette (ABC) transporter family, Hum. Genomics, 2009, 3, 281–290 Google Scholar

  • [3] Moussatova A., Kandt C., O’Mara M.L., Tieleman D.P., ATP binding cassette transporters in Escherichia coli, Biochim. Biophys. Acta, 2008, 1778, 1757–1771 http://dx.doi.org/10.1016/j.bbamem.2008.06.009CrossrefGoogle Scholar

  • [4] Rea P.A., Plant ATP-binding cassette transporters, Annu. Rev. Plant Biol., 2007, 58, 347–375 http://dx.doi.org/10.1146/annurev.arplant.57.032905.105406CrossrefGoogle Scholar

  • [5] Schneider E., Hunke S., ATP-binding-cassette (ABC) transport systems: Functional and structural aspects of the ATP-hydrolyzing subunits/domains, FEMS Microbiol. Rev., 1998, 22, 1–20 http://dx.doi.org/10.1111/j.1574-6976.1998.tb00358.xCrossrefGoogle Scholar

  • [6] Oswald C., Holland I.B., Schmitt L., The motor domains of ABC-transporters. What can structures tell us?, Naunyn-Schmiedeberg’s Arch. Pharmacol., 2006, 372, 385–399 http://dx.doi.org/10.1007/s00210-005-0031-4CrossrefGoogle Scholar

  • [7] Jones P.M., O’Mara M.L., George A.M., ABC transporters: a riddle wrapped in a mystery inside an enigma, Trends Biochem. Sci., 2009, 34, 520–531 http://dx.doi.org/10.1016/j.tibs.2009.06.004CrossrefGoogle Scholar

  • [8] Eitinger T., Rodionov D.A., Grote M., Schneider E., Canonical and ECF-type ATP binding cassette importers in prokaryotes: diversity in modular organisation and cellular functions, FEMS Microbiol. Rev., 2011, 35, 3–67 http://dx.doi.org/10.1111/j.1574-6976.2010.00230.xCrossrefGoogle Scholar

  • [9] Rees D.C., Johnson E., Lewinson O., ABC transporters: the power to change, Nature Rev. Mol. Cell Biol., 2009, 10, 218–227 http://dx.doi.org/10.1038/nrm2646CrossrefGoogle Scholar

  • [10] Aller S.G., Yu J., Ward A., Weng Y., Chittaboina S., Zhuo R., et al., Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding, Science, 2009, 323, 1718–1722 http://dx.doi.org/10.1126/science.1168750CrossrefGoogle Scholar

  • [11] Zhang P., Wang J., Shi Y., Structure and mechanism of the S component of a bacterial ECF transporter, Nature, 2010, 468, 717–720 http://dx.doi.org/10.1038/nature09488CrossrefGoogle Scholar

  • [12] Karcher A., Schele A., Hopfner K.P., X-ray Structure of the complete ABC enzyme ABCE1 from Pyrococcus abyssi, J. Biol. Chem., 2008, 283, 7962–7971 http://dx.doi.org/10.1074/jbc.M707347200Google Scholar

  • [13] Borst P., Elferink R.O., Mammalian ABC transporter in health and disease, Annu. Rev. Biochem., 2002, 71, 537–592 http://dx.doi.org/10.1146/annurev.biochem.71.102301.093055CrossrefGoogle Scholar

  • [14] Seeger M.A., van Veen H.W., Molecular basis of multidrug transport by ABC transporters, Biochim. Biophys. Acta, 2009, 1794, 725–737 Google Scholar

  • [15] Yazaki K., Shitan N., Sugiyama A., Takanashi T., Cell and molecular biology of ATP-binding cassette proteins in plants, In: Jeon K.W., (Ed.), International review of cell and molecular biology, Vol. 276, Academic Press, Burlington, 2009, 263–299 http://dx.doi.org/10.1016/S1937-6448(09)76006-XGoogle Scholar

  • [16] Kerr I.D., Jones P.M., George A.M., Multidrug efflux pumps: The structures of prokaryotic ATP-binding cassette transporter efflux pumps and implications for our understanding of eukaryotic P-glycoproteins and homologues, FEBS J., 2010, 277, 550–563 http://dx.doi.org/10.1111/j.1742-4658.2009.07486.xCrossrefGoogle Scholar

  • [17] Holland I.B., Cole S.P.C., Kuchler K., Higgins C.F., (Eds.), ABC proteins: From bacteria to man, Elsevier, Amsterdam, 2003 Google Scholar

  • [18] Sperandeo P., Dehò G., Polissi A., The lipopolysaccharide transport system of Gramnegative bacteria, Biochim. Biophys. Acta, 2009, 1791, 594–602 Google Scholar

  • [19] Schölz C., Tampé R., The peptide-loading complexantigen translocation and MHC class I loading, Biol. Chem., 2009, 390, 783–794 http://dx.doi.org/10.1515/BC.2009.069CrossrefGoogle Scholar

  • [20] Szakács G., Paterson J.K., Ludwig J.A., Booth-Genthe C., Gottesman M.M., Targeting multidrug resistance in cancer, Nat. Rev. Drug Discov., 2006, 5, 219–234 http://dx.doi.org/10.1038/nrd1984CrossrefGoogle Scholar

  • [21] Ernst R., Kueppers P., Stindt J., Kuchler K., Schmitt L., Multidrug efflux pumps: substrate selection in ATP-binding cassette multidrug efflux pumps-first come, first served?, FEBS J., 2010, 277, 540–549 http://dx.doi.org/10.1111/j.1742-4658.2009.07485.xCrossrefGoogle Scholar

  • [22] Ward A., Reyes C.L., Yu J., Roth C.B., Chang G., Flexibility in the ABC transporter MsbA: Alternating access with a twist, Proc. Natl. Acad. Sci. U S A., 2007, 104, 19005–19010 http://dx.doi.org/10.1073/pnas.0709388104CrossrefGoogle Scholar

  • [23] Dawson R. J. P., Locher K. P., Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP, FEBS Lett., 2007, 581, 935–938 http://dx.doi.org/10.1016/j.febslet.2007.01.073CrossrefGoogle Scholar

  • [24] Oancea G., O’Mara M.L., Bennett W.F., Tieleman D.P., Abele R., Tampé R., Structural arrangement of the transmission interface in the antigen ABC transport complex TAP, Proc. Natl. Acad. Sci. USA, 2009, 106, 5551–5556 http://dx.doi.org/10.1073/pnas.0811260106CrossrefGoogle Scholar

  • [25] Dawson R.J., Locher K.P., Structure of a bacterial multidrug ABC transporter, Nature, 2006, 443, 180–185 http://dx.doi.org/10.1038/nature05155CrossrefGoogle Scholar

  • [26] Gupta R.P., Kueppers P., Schmitt L., Ernst R., The multidrug transporter Pdr5: a molecular diode?, Biol. Chem., 2011, 392, 53–60 http://dx.doi.org/10.1515/BC.2011.011CrossrefGoogle Scholar

  • [27] Locher K.P., Structure and mechanism of ATP-binding cassette transporters, Phil. Trans. R. Soc. B, 2009, 364, 239–245 http://dx.doi.org/10.1098/rstb.2008.0125CrossrefGoogle Scholar

  • [28] Federici L., Woebking B., Velamakanni S., Shilling R.A., Luisi B., van Veen H.W., New structure model for the ATP-binding cassette multidrug transporter LmrA, Biochem. Pharmacol., 2007, 74, 672–678 http://dx.doi.org/10.1016/j.bcp.2007.05.015CrossrefGoogle Scholar

  • [29] Velamakanni S., Yao Y., Gutmann D.A.P., van Veen H.W., Multidrug Transport by the ABC Transporter Sav1866 from Staphylococcus aureus, 2008, Biochemistry 47, 9300–9308 http://dx.doi.org/10.1021/bi8006737CrossrefGoogle Scholar

  • [30] Hwang T.C., Sheppard D.N., Gating of the CFTR Cl- channel by ATP-driven nucleotide-binding domain dimerization, J. Physiol., 2009, 587, 2151–2161 http://dx.doi.org/10.1113/jphysiol.2009.171595CrossrefGoogle Scholar

  • [31] Bryan J., Muñoz A., Zhang X., Düfer M., Drews G., Krippeit-Drews P., et al., ABCC8 and ABCC9: ABC transporters that regulate K+ channels, Pflugers Arch., 2007, 453, 703–718 http://dx.doi.org/10.1007/s00424-006-0116-zCrossrefGoogle Scholar

  • [32] Berntsson R.P., Smits S.H., Schmitt L., Slotboom D.J., Poolman B., A structural classification of substrate-binding proteins, FEBS Lett., 2010, 584, 2606–2617 http://dx.doi.org/10.1016/j.febslet.2010.04.043CrossrefGoogle Scholar

  • [33] Shilton B.H., The dynamics of the MBP-MalFGK(2) interaction: a prototype for binding protein dependent ABC-transporter systems, Biochim. Biophys. Acta, 2008, 1778, 1772–1780 http://dx.doi.org/10.1016/j.bbamem.2007.09.005CrossrefGoogle Scholar

  • [34] Schneider E., Eckey V., Weidlich D., Wiesemann N., Vahedi-Faridi A., Thaben P., et al., Receptortransporter interactions of canonical ATP-binding cassette import systems in prokaryotes, Eur. J. Cell Biol., 2011, (in press) doi:10.1016/j.ejcb.2011.02.008 CrossrefGoogle Scholar

  • [35] Falke J.J., Hazelbauer G.L., Transmembrane signaling in bacterial chemoreceptors, Trends Biochem. Sci., 2001, 26, 257–265 http://dx.doi.org/10.1016/S0968-0004(00)01770-9CrossrefGoogle Scholar

  • [36] Khare D., Oldham M., Orelle C., Davidson A.L., Chen J., Alternating access in maltose transporter mediated by rigid-body rotations, Mol. Cell, 2009, 33, 528–536 http://dx.doi.org/10.1016/j.molcel.2009.01.035CrossrefGoogle Scholar

  • [37] Oldham M. L., Khare D., Quiocho F.A., Davidson A.L., Chen J., Crystal structure of a catalytic intermediate of the maltose transporter, Nature, 2007, 450, 515–522 http://dx.doi.org/10.1038/nature06264CrossrefGoogle Scholar

  • [38] Daus M.L., Grote M., Schneider E., The MalF-P2 loop of the ATP-binding cassette (ABC) transporter MalFGK2 from Escherichia coli / Salmonella enterica serovar Typhimurium interacts with maltose binding protein (MalE) throughout the catalytic cycle, J. Bacteriol., 2009, 191, 754–761 http://dx.doi.org/10.1128/JB.01439-08CrossrefGoogle Scholar

  • [39] Grote M., Polyhach Y., Jeschke G., Steinhoff H.-J., Schneider E., Bordignon E., Transmembrane signaling in the maltose ABC transporter MalFGK2-E. Periplasmic MalFP2 loop communicates substrate availability to the ATP-bound MalK dimer, J. Biol. Chem., 2009, 284, 17521–17526 http://dx.doi.org/10.1074/jbc.M109.006270CrossrefGoogle Scholar

  • [40] Bordignon E., Grote M., Schneider E., The maltose ABC transporter in the 21st century — towards a structural-dynamic perspective on its mode of action, Mol. Microbiol., 2010, 77, 1354–1366 http://dx.doi.org/10.1111/j.1365-2958.2010.07319.xCrossrefGoogle Scholar

  • [41] Schneider E., Import of solutes by ABC transportersthe maltose and other systems, In: Holland E.B., Cole S., Kuchler K., Higgins C., (Eds.), ABC proteins: From bacteria to man, Elsevier, Amsterdam, 2003, 157–185 Google Scholar

  • [42] Ames G.F., Nikaido K., Wang I.X., Liu P.Q., Liu C.E., Hu C., Purification and characterization of the membrane-bound complex of an ABC transporter, the histidine permease, J. Bioenerg. Biomembr., 2001, 33, 79–92 http://dx.doi.org/10.1023/A:1010797029183CrossrefGoogle Scholar

  • [43] Hung L.-W., Wang I.X., Nikaido K., Liu P.-Q., Ames G.F.-L., Kim S.-H., Crystal structure of the ATP-binding subunit of an ABC transporter, Nature, 1998, 396, 703–707 http://dx.doi.org/10.1038/25393CrossrefGoogle Scholar

  • [44] Wood J.M., Osmosensing by bacteria: signals and membrane-based sensors, Microbiol. Mol. Biol. Rev., 1999, 63, 230–262 Google Scholar

  • [45] Patzlaff J.S., van der Heide T., Poolman B., The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA, J. Biol. Chem., 2003, 278, 29546–29551 http://dx.doi.org/10.1074/jbc.M304796200CrossrefGoogle Scholar

  • [46] Locher K.P., Lee A.T., Rees D.C., The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism, Science, 2002, 296, 1091–1098 http://dx.doi.org/10.1126/science.1071142CrossrefGoogle Scholar

  • [47] Locher K., Structure and mechanism of ATP-binding cassette transporters, Phil. Trans. R. Soc. B, 2009, 364, 239–245 http://dx.doi.org/10.1098/rstb.2008.0125CrossrefGoogle Scholar

  • [48] Saurin W., Köster W., Dassa E., Bacterial binding protein dependent permeases: characterization of distinctive signatures for functionally related integral cytoplasmic membrane proteins, Mol. Microbiol., 1994, 12, 993–1004 http://dx.doi.org/10.1111/j.1365-2958.1994.tb01087.xCrossrefGoogle Scholar

  • [49] Hollenstein K., Frei D.C., Locher K.P., Structure of an ABC transporter in complex with its binding protein, Nature, 2007, 446, 213–216 http://dx.doi.org/10.1038/nature05626CrossrefGoogle Scholar

  • [50] Gerber S., Comellas-Bigler M., Goetz B. A., Locher K. P., Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter, Science, 2008, 321, 246–250 http://dx.doi.org/10.1126/science.1156213CrossrefGoogle Scholar

  • [51] Kadaba N. S., Kaiser J. T., Johnson E., Lee A., Rees D. C., The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation, Science, 2008, 321, 250–253 http://dx.doi.org/10.1126/science.1157987CrossrefGoogle Scholar

  • [52] Pinkett H. W., Lee A. T., Lum P., Locher K. P., Rees D. C., An inward-facing conformation of a putative metal-chelate type ABC transporter, Science, 2007, 315, 373–377 http://dx.doi.org/10.1126/science.1133488CrossrefGoogle Scholar

  • [53] Hvorup R.N., Goetz B.A., Niederer M., Hollenstein K., Perozo E., Locher K.P., Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF, Science, 2007, 317, 1387–1390 http://dx.doi.org/10.1126/science.1145950CrossrefGoogle Scholar

  • [54] Goetz B.A., Perozo E., Locher K.P., Distinct gate conformations of the ABC transporter BtuCD revealed by electron spin resonance spectroscopy and chemical crosslinking, FEBS Lett., 2009, 583, 266–270 http://dx.doi.org/10.1016/j.febslet.2008.12.020CrossrefGoogle Scholar

  • [55] Lewinson O., Lee A.T., Locher K.P., Rees D.C., A distinct mechanism for the ABC transporter BtuCD-BtuF revealed by the dynamics of complex formation, Nature Struct. Mol. Biol., 2010, 17, 332–338 http://dx.doi.org/10.1038/nsmb.1770CrossrefGoogle Scholar

  • [56] Finkenwirth F., Neubauer O., Gunzenhäuser J., Schoknecht J., Scolari S., Stöckl M., et al., Subunit composition of an energy-coupling-factortype biotin transporter analysed in living bacteria, Biochem. J., 2010, 431, 373–380 Google Scholar

  • [57] ter Beek J., Duurkens R.H., Erkens G.B., Slotboom D.J., Quaternary structure and functional unit of energy coupling factor (ECF)-type transporters, J. Biol. Chem., 2011, 286, 5471–5475 http://dx.doi.org/10.1074/jbc.M110.199224CrossrefGoogle Scholar

  • [58] Hebbeln P., Rodionov D.A., Alfandega A., Eitinger T., Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module, Proc. Natl. Acad. Sci, U S A, 2007, 104, 2909–2914 http://dx.doi.org/10.1073/pnas.0609905104CrossrefGoogle Scholar

  • [59] Zhang P., Wang J., Shi Y., Structure and mechanism of the S component of a bacterial ECF transporter, Nature, 2010, 468, 717–720 http://dx.doi.org/10.1038/nature09488CrossrefGoogle Scholar

  • [60] Neubauer O., Alfandega A., Schoknecht J., Sternberg U., Pohlmann A., Eitinger T., Two essential arginine residues in the T components of energy-coupling factor transporters, J. Bacteriol., 2009, 191, 6482–6488 http://dx.doi.org/10.1128/JB.00965-09CrossrefGoogle Scholar

  • [61] Wilcox L.J., Balderes D.A., Wharton B., Tinkelenberg A.H., Rao, G. Sturley S.L., Transcriptional profiling identifies two members of the ATP-binding cassette transporter superfamily required for sterol uptake in yeast, J. Biol. Chem., 2002, 277, 32466–32472 http://dx.doi.org/10.1074/jbc.M204707200CrossrefGoogle Scholar

  • [62] Ehrenman K., Sehgal A., Lige B., Stedman T.T., Joiner K.A., Coppens I., Novel roles for ATP-binding cassette G transporters in lipid redistribution in Toxoplasma, Mol. Microbiol., 2010, 76, 1232–1249 http://dx.doi.org/10.1111/j.1365-2958.2010.07169.xCrossrefGoogle Scholar

  • [63] Kang J., Hwang J.-U., Lee M., Kim Y.-Y., Assmann S.M., Martinoia E., et al., PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid, Proc. Natl. Acad. Sci. U S A, 2010, 107, 2355–2360 http://dx.doi.org/10.1073/pnas.0909222107CrossrefGoogle Scholar

  • [64] Lee M., Choi Y., Burla B., Kim Y.Y., Jeon B., Maeshima M., et al., The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2, Nature Cell Biol., 2008, 10, 1217–1223 http://dx.doi.org/10.1038/ncb1782CrossrefGoogle Scholar

  • [65] Shitan N., Bazin I., Dan K., Obata K., Kigawa K., Ueda K., et al., Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica, Proc. Natl. Acad. Sci. USA, 2003, 100, 751–756 http://dx.doi.org/10.1073/pnas.0134257100Google Scholar

  • [66] ZazÍmalová E., Murphy A.S., Yang H., Hoyerová K., Hosek P., Auxin transporters-why so many?, Cold Spring Harb. Perspect. Biol., 2010, 2, a001552 http://dx.doi.org/10.1101/cshperspect.a001552CrossrefGoogle Scholar

  • [67] Hopfner K.P., Tainer J.A., Rad50/SMC proteins and ABC transporters: unifying concepts from high-resolution structures, Curr. Opin. Struct. Biol., 2003, 13, 249–255 http://dx.doi.org/10.1016/S0959-440X(03)00037-XCrossrefGoogle Scholar

  • [68] Pakotiprapha D., Inuzuka Y., Bowman B.R., Moolenaar G.F., Goosen N., Jeruzalmi et al., Crystal structure of Bacillus stearothermophilus UvrA provides insight into ATP-modulated dimerization, UvrB interaction, and DNA binding, Mol. Cell, 2008, 29, 122–133 http://dx.doi.org/10.1016/j.molcel.2007.10.026CrossrefGoogle Scholar

  • [69] Reynolds E., Ross J.I., Cove J.H., Msr(A) and related macrolide/streptogramin resistance determinants: incomplete transporters?, Int. J. Antimicrob. Agents, 2003, 22, 228–236 http://dx.doi.org/10.1016/S0924-8579(03)00218-8CrossrefGoogle Scholar

  • [70] Braz A.S., Finnegan J., Waterhouse P., Margis R., A plant orthologue of RNase L inhibitor (RLI) is induced in plants showing RNA interference, J. Mol. Evol., 2004, 59, 20–30 http://dx.doi.org/10.1007/s00239-004-2600-4CrossrefGoogle Scholar

  • [71] Andersen C.B.F., Becker T., Blau M., Anand M., Halic M., Balar B., et al., Structure of eEF3 and the mechanism of transfer RNA release from the E-site, Nature, 2006, 443, 663–668 http://dx.doi.org/10.1038/nature05126CrossrefGoogle Scholar

  • [72] Zaitseva J., Jenewein S., Oswald C., Jumpertz T., Holland I.B., Schmitt L., A molecular understanding of the catalytic cycle of the nucleotide-binding domain of the ABC transporter HlyB, Biochem. Soc. Trans., 2005, 33, 990–995 http://dx.doi.org/10.1042/BST20050990CrossrefGoogle Scholar

  • [73] van Veen H.W., Callaghan R., Soceneantu L., Sardini A., Konings W.N., Higgins C.F., A bacterial antibiotic-resistance gene that complements the human multidrug-resistance P-glycoprotein gene, Nature, 1998, 391, 291–295 http://dx.doi.org/10.1038/34669CrossrefGoogle Scholar

  • [74] Zhang H., Pradhan P., Kaur P., The extreme C terminus of the ABC protein DrrA contains unique motifs involved in function and assembly of the DrrAB complex, 2010, J. Biol. Chem. 285, 38324–38336 http://dx.doi.org/10.1074/jbc.M110.131540CrossrefGoogle Scholar

  • [75] Tokuda H., Biogenesis of outer membranes in Gram-negative bacteria, Biosci. Biotechnol. Biochem., 2009, 73, 465–473 http://dx.doi.org/10.1271/bbb.80778CrossrefGoogle Scholar

  • [76] Berkower C., Taglicht D., Michaelis S., Functional and physical interactions between partial molecules of STE6, a yeast ATP-binding cassette protein, J. Biol. Chem., 1996, 271, 22983–22989 http://dx.doi.org/10.1074/jbc.271.38.22983CrossrefGoogle Scholar

  • [77] Zuben E., Sauna Z.E., Kim I.-W., Ambudkar S.V., Genomics and the mechanism of P-glycoprotein (ABCB1), J. Bioenerg. Biomembr., 2007, 39, 481–487 http://dx.doi.org/10.1007/s10863-007-9115-9CrossrefGoogle Scholar

  • [78] Berger J., Gärtner J., X-linked adrenoleukodystrophy: clinical, biochemical and pathogenetic aspects, Biochim. Biophys. Acta, 2006, 1763, 1721–1732 http://dx.doi.org/10.1016/j.bbamcr.2006.07.010CrossrefGoogle Scholar

  • [79] Molday R.S., Zhong M., Quazi F., The role of the photoreceptor ABC transporter ABCA4 in lipid transport and Stargardt macular degeneration, Biochim. Biophys. Acta, 2009, 1791, 573–583 Google Scholar

  • [80] Attie A.D., ABCA1: at the nexus of cholesterol, HDL and atherosclerosis, Trends Biochem. Sci., 2007, 32, 172–179 http://dx.doi.org/10.1016/j.tibs.2007.02.001CrossrefGoogle Scholar

  • [81] Gadsby D.C., Vergani P., Csanády L., The ABC protein turned chloride channel whose failure causes cystic fibrosis, Nature, 2006, 440, 477–483 http://dx.doi.org/10.1038/nature04712CrossrefGoogle Scholar

  • [82] Doeven M.K., Abele R., Tampé R., Poolman B., The binding specificity of OppA determines the selectivity of the oligopeptide ATP-binding cassette transporter, J. Biol. Chem., 2004, 279, 32301–32307 http://dx.doi.org/10.1074/jbc.M404343200CrossrefGoogle Scholar

  • [83] Braun V., Braun M., Killmann H., Ferrichromeand citrate-mediated iron transport, In: Iron Transport in Bacteria, Crosa J.H., Mey A.R., Payne S.M., (Eds.), ASM Press, Washington, DC, 2004, 158–177 Google Scholar

  • [84] Borths E.L., Poolman B., Hvorup R.N., Locher K.P., Rees D.C., In vitro functional characterization of BtuCD-F, the Escherichia coli ABC transporter for vitamin B12 uptake, Biochemistry, 2005, 44, 16301–16309 http://dx.doi.org/10.1021/bi0513103CrossrefGoogle Scholar

  • [85] Li J., Attila C., Wang L., Wood T.K., Valdes J.J., Bentley W.E., Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture, J. Bacteriol., 2007, 189, 6011–6020 http://dx.doi.org/10.1128/JB.00014-07CrossrefGoogle Scholar

  • [86] Kunkel T.A., Erie D.A., DNA mismatch repair, Annu. Rev. Biochem., 2005, 74, 681–710 http://dx.doi.org/10.1146/annurev.biochem.74.082803.133243CrossrefGoogle Scholar

  • [87] Zepeda M.Y.B., Alessandri K., Murat D., El Amri C., Dassa E., C-terminal domain of the Uup ATPbinding cassette ATPase is an essential folding domain that binds to DNA, Biochim. Biophys. Acta, 2010, 1804, 755–761 Google Scholar

About the article

Published Online: 2011-09-02

Published in Print: 2011-10-01

Citation Information: Open Life Sciences, Volume 6, Issue 5, Pages 785–801, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-011-0054-4.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Awdhesh Kumar Mishra, Jinhee Choi, Muhammad Fazle Rabbee, and Kwang-Hyun Baek
BioMed Research International, 2019, Volume 2019, Page 1
Falk Syberg, Yan Suveyzdis, Carsten Kötting, Klaus Gerwert, and Eckhard Hofmann
Journal of Biological Chemistry, 2012, Volume 287, Number 28, Page 23923
Steven Wuttge, Anke Licht, M. Hadi Timachi, Enrica Bordignon, and Erwin Schneider
Biochemistry, 2016, Volume 55, Number 38, Page 5442
Timur R. Gimadiev, Timur I. Madzhidov, Gilles Marcou, and Alexandre Varnek
BioNanoScience, 2016, Volume 6, Number 4, Page 464
Giuseppe Andolfo, Michelina Ruocco, Antimo Di Donato, Luigi Frusciante, Matteo Lorito, Felice Scala, and Maria Ercolano
BMC Plant Biology, 2015, Volume 15, Number 1, Page 51
Feras M. Almourfi, H. Fiona Rodgers, Svetlana E. Sedelnikova, and Patrick J. Baker
Acta Crystallographica Section F Structural Biology Communications, 2015, Volume 71, Number 2, Page 189
Eeva-Riikka Vehniäinen and Jussi V.K. Kukkonen
Chemosphere, 2015, Volume 124, Page 143
Jayita Saha, Atreyee Sengupta, Kamala Gupta, and Bhaskar Gupta
Computational Biology and Chemistry, 2015, Volume 54, Page 18
Dunquan Jiang, Qingqing Zhang, Qianqian Zheng, Hao Zhou, Jin Jin, Weihong Zhou, Mark Bartlam, and Zihe Rao
FEBS Journal, 2014, Volume 281, Number 1, Page 331
Johanna Heuveling, Violette Frochaux, Joanna Ziomkowska, Robert Wawrzinek, Pablo Wessig, Andreas Herrmann, and Erwin Schneider
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2014, Volume 1838, Number 1, Page 106
Daniela Weidlich, Nicole Wiesemann, Johanna Heuveling, Kristina Wardelmann, Heidi Landmesser, Katayoun Behnam Sani, Catherine L. Worth, Robert Preissner, and Erwin Schneider
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2013, Volume 1828, Number 9, Page 2164
Douglas B. Kell, Paul D. Dobson, Elizabeth Bilsland, and Stephen G. Oliver
Drug Discovery Today, 2013, Volume 18, Number 5-6, Page 218
Steven Wuttge, Martin Bommer, Franziska Jäger, Berta M. Martins, Sophie Jacob, Anke Licht, Frank Scheffel, Holger Dobbek, and Erwin Schneider
Molecular Microbiology, 2012, Volume 86, Number 4, Page 908

Comments (0)

Please log in or register to comment.
Log in