Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 6, Issue 6


Volume 10 (2015)

Rosmarinic acid content in basil plants grown in vitro and in hydroponics

Claudia Kiferle / Mariella Lucchesini / Anna Mensuali-Sodi / Rita Maggini / Andrea Raffaelli
  • Institute for the Chemistry of Organo Metallic Compounds (ICCOM), National Council of Research (CNR), 56126, Pisa, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alberto Pardossi
Published Online: 2011-11-23 | DOI: https://doi.org/10.2478/s11535-011-0057-1


The accumulation of selected caffeic acid derivatives (CADs), in particular rosmarinic acid (RA), was investigated in different tissues (leaves, roots and plantlet shoots) of sweet basil (Ocimum basilicum L.) plants grown either in vitro or in hydroponic culture (floating system) under greenhouse conditions. Two cultivars with green leaves (Genovese and Superbo) and one with purple leaves (Dark Opal) were tested. The content of CADs in HCl-methanol extracts was determined by HPLC. LC-MS and LC-MS-MS were used to confirm the identification of the metabolites of interest. Apart from rosmarinic acid (RA) and a methylated form of this substance, no other CADs were detected at significant level in any of the analyzed samples. The content of RA ranged approximately from 4 to 63 mg/g DW, depending on the growing system. The highest RA content was found during the in vitro multiplication, in the acclimatized plants and in the roots of hydroponically-grown seedlings at full bloom. In vitro, 6-benzyladenine reduced the accumulation of RA in purple-leaf Dark Opal cultivar, but an opposite effect of this growth regulator was observed in the green-leaf genotypes. Our findings suggest the possibility to scale-up RA production by means of in vitro or hydroponic culture of sweet basil.

Keywords: 6-benzylaminopurine; Cytokinin; Floating system; Leaves; Micropropagation phase; Ocimum basilicum; Physiological stage; Roots; Soilless culture

  • [1] Makri O., Kintzios S, Ocimum sp. (Basil): botany, cultivation, pharmaceutical properties, and biotechnology, J. Herbs. Spices Med. Plants, 2007, 13, 123–150 http://dx.doi.org/10.1300/J044v13n03_10CrossrefGoogle Scholar

  • [2] De Masi L., Silviero P., Esposito C., Castaldo D., Siano F., Laratta B., Assessment of agronomic, chemical and genetic variability in common basil (Ocimum basilicum L.), Eur. Food Res. Technol., 2006, 223, 273–281 http://dx.doi.org/10.1007/s00217-005-0201-0CrossrefGoogle Scholar

  • [3] Zheljazkov V.D., Cantrell C.L., Tekwani B., Khan S.I., Content, Composition, and Bioactivity of the Essential Oils of Three Basil Genotypes as a Function of Harvesting, J. Agric. Food Chem., 2008, 56, 380–385 http://dx.doi.org/10.1021/jf0725629CrossrefGoogle Scholar

  • [4] Javanmardi J., Khalighi A., Kashi A., Bais H.P., Vivanco J.M., Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran, J. Agric. Food Chem., 2002, 50, 5878–5883 http://dx.doi.org/10.1021/jf020487qCrossrefGoogle Scholar

  • [5] Juliani H.R., Koroch A.R., Simon J.E., Basil: A new source of rosmarinic acid. In: Ho C.T., Simon J.E., Shahidi F., Shao Y., (Eds), Dietary Supplements, American Chemical Society Symposium Series 987, American Chemical Society, Washington, D.C. USA, 2008, 129–143 Google Scholar

  • [6] Petersen M., Simmonds M.S.J., Molecules of interest Rosmarinic acid, Phytochemistry, 2003, 62, 121–125 http://dx.doi.org/10.1016/S0031-9422(02)00513-7CrossrefGoogle Scholar

  • [7] Orcutt D.M., Nilsen E.T., The physiology of plants under stress soil and biotic factors, John Wiley and Sons Inc., New York, 2000 Google Scholar

  • [8] Canter P.H., Thomas H., Ernst E., Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology, Trends Biotech., 2005, 23, 180–185 http://dx.doi.org/10.1016/j.tibtech.2005.02.002CrossrefGoogle Scholar

  • [9] Karuppusamy S., A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures, J. Med. Plants Res., 2009, 3, 1222–1239 Google Scholar

  • [10] Pardossi A., Malorgio F., Incrocci L., Tognoni F., Hydroponic technologies for greenhouse crops, In: Dris R., (Ed.), Crops: Quality, Growth and Biotechnology, WFL Publisher, Helsinki, 2006, 23, 360–378 Google Scholar

  • [11] Miceli A., Moncada A., Vetrano F., D’Anna F., First results on yield and quality response of basil (Ocimum basilicum L.) grown in a floating system, Acta Hort., 2003, 609, 377–381 Google Scholar

  • [12] Dorais M., Papadopoulos A.P., Luo X., Leonhart S., Gosselin A., Pedneault K., et al., Soilless greenhouse production of medicinal plants in North Eastern Canada, Acta Hort. (ISHS), 2001, 554, 297–304 Google Scholar

  • [13] Maggini R., Raffaelli A., Annaheim K.A., Tozzini L., Pacifici S., Guidi L., et al., Effect of postharvest handling and extraction on the content of echinacoside and cynarin in the root tissues of Echinacea angustifolia DC., J. Food Agric. Environ. 2010, 8, 266–271 Google Scholar

  • [14] Matkowski A., Plant in vitro for the production of antioxidants — A review, Biotech. Adv., 2008, 26, 548–560 http://dx.doi.org/10.1016/j.biotechadv.2008.07.001CrossrefGoogle Scholar

  • [15] Weathers P.S., Towler M.J., Xu J., Bench to batch: advances in plant cell culture for producing useful products., Appl. Microbiol. Biotechnol., 2010, 85, 1339–1351 http://dx.doi.org/10.1007/s00253-009-2354-4CrossrefGoogle Scholar

  • [16] Kintzios S., Makri O., Panagiotopoulos E., Scapeti M., In vitro rosmarinic acid accumulation in sweet basil (Ocimum basilicum L.), Biotechnol. Lett., 2003, 25, 405–408 http://dx.doi.org/10.1023/A:1022402515263CrossrefGoogle Scholar

  • [17] Kintzios S., Kollias H., Straitouris E., Makri O., Scale-up micropropagation of sweet basil (Ocimum basilicum L.) in an airlift bioreactor and accumulation of rosmarinic acid, Biotechnol. Lett., 2004, 26, 521–523 http://dx.doi.org/10.1023/B:BILE.0000019561.89044.30CrossrefGoogle Scholar

  • [18] Rady M.R., Nazif N.M., Rosmarinic acid content and RAPD analysis of in vitro regenerated basil (Ocimum basilicum L.) plants, Fitoterapia, 2005, 76, 525–533 http://dx.doi.org/10.1016/j.fitote.2005.04.001CrossrefGoogle Scholar

  • [19] Bais H.P., Walker T.S., Schweizer H.P., Vivanco J.M., Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum, Plant Physiol. Biochem., 2002, 40, 983–995 http://dx.doi.org/10.1016/S0981-9428(02)01460-2CrossrefGoogle Scholar

  • [20] Sgherri C., Cecconami S., Pinzino C., Navari-Izzo F., Izzo R., Levels of antioxidants and nutraceuticals in basil grown in hydroponics and soil, Food Chem., 2010, 123, 416–422 http://dx.doi.org/10.1016/j.foodchem.2010.04.058CrossrefGoogle Scholar

  • [21] Ahloowalia B.S., Integration of technology from lab to land, In: Low cost options for tissue culture technology in developing countries, Proceedings of a Technical Meeting, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, (26–30 August 2002, Vienna, Austria), IAEA, 2004, 87–89 Google Scholar

  • [22] Montero J.I., Stanghellini C., Castilla N., Greenhouse technology for sustainable production in mild winter climate areas: Trends and needs, Acta Hort., 2009, 807, 33–44 Google Scholar

  • [23] Chaterjee A., Shukla S., Mishra P., Rastogi A., Singh S.P., Prospects of in vitro production of thebaine in opium poppy (Papaver somniferum L.), Ind. Crops Prod., 2010, 32, 668–670 http://dx.doi.org/10.1016/j.indcrop.2010.04.007CrossrefGoogle Scholar

  • [24] Murashige T., Skoog F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 1962, 15, 473–493 http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.xCrossrefGoogle Scholar

  • [25] Parfitt D.E., Almehdi A.A., Bloksberg L.N., Use of organic buffers in plant tissue-culture systems, Sci. Hortic., 1988, 36, 157–163 http://dx.doi.org/10.1016/0304-4238(88)90049-0CrossrefGoogle Scholar

  • [26] Morgan J.A., Barney C.S., Penn A.H., Shanks J.V., Effects of buffered media upon growth and alkaloid production of Catharanthus roseus hairy roots, Appl. Microbiol. Biotechnol., 2000, 53, 262–265 http://dx.doi.org/10.1007/s002530050018CrossrefGoogle Scholar

  • [27] Wolfender J.L., HPLC in natural product analysis: The detection issue, Planta Med., 2009, 75, 719–734 http://dx.doi.org/10.1055/s-0028-1088393CrossrefGoogle Scholar

  • [28] Lichtenthaler H.K., Chlorophylls and carotenoids: pigments of photosynthetic membranes, Meth. Enzymol., 1987, 148, 350–382 http://dx.doi.org/10.1016/0076-6879(87)48036-1CrossrefGoogle Scholar

  • [29] Jiang R.W., Lau K.M., Hon P.M., Mak T.C.W., Woo K.S., Fung K.P., Chemistry and Biological Activities of Caffeic Acid Derivatives from Salvia miltiorrhiza., Curr. Med. Chem., 2005, 12, 237–246 CrossrefGoogle Scholar

  • [30] Fecka I., Turek S., Determination of Water-Soluble Polyphenolic Compounds in Commercial Herbal Teas from Lamiaceae: Peppermint, Melissa, and Sage, J. Agric. Food Chem., 2007, 55, 10908–10917 http://dx.doi.org/10.1021/jf072284dCrossrefGoogle Scholar

  • [31] Strazzer P., Guzzo F., Levi M., Correlated accumulation of anthocyanins and rosmarinic acid in mechanically stressed red cell suspension of basil (Ocimum basilicum), J. Plant Physiol., 2011, 168, 288–293 http://dx.doi.org/10.1016/j.jplph.2010.07.020CrossrefGoogle Scholar

  • [32] Laguerre M.L., Lopez Giraldo L.J., Lecomte J., Figueroa-Espinoza M.C., Barea B., Weiss J., et al., Relationship between hydrophobicity and antioxidant ability of “phenolipids” in emulsion: a parabolic effect of the chain length of rosmarinate esters, J. Agric. Food Chem., 2010, 58, 2869–2876 http://dx.doi.org/10.1021/jf904119vCrossrefGoogle Scholar

  • [33] Kabganian R., Carrier D.J., Soskansanj S., Drying of Echinacea angustifolia roots, J. Herbs Spices Med. Plants, 2003, 10, 11–18 http://dx.doi.org/10.1300/J044v10n01_02CrossrefGoogle Scholar

  • [34] Li T.S.C., Wardle D.A., Effects of root drying temperature and moisture content on the levels of active ingredients in Echinacea roots, J. Herbs Spices Med. Plants, 2001, 8, 15–22 http://dx.doi.org/10.1300/J044v08n01_03CrossrefGoogle Scholar

  • [35] Sahoo Y., Patfnaik S.K., Chand P.K., In vitro propagation of an aromatic medicinal herb Ocimum basilicum L. (Sweet basil) by axillary shoot proliferation, In Vitro Cell. Dev. Biol. Plant., 1997, 33, 293–296 http://dx.doi.org/10.1007/s11627-997-0053-3CrossrefGoogle Scholar

  • [36] Begum F., Amin M.N., Azad M.A.K., In vitro rapid clonal propagation of Ocimum basilicum L., Plant Tissue Cult., 2002, 12, 27–35 Google Scholar

  • [37] Lucchesini M., Mensuali-Sodi A., Influence of medium composition and vessel ventilation on in vitro propagation of Phillyrea latifoglia L., Sci. Hort., 2004, 100, 117–125 http://dx.doi.org/10.1016/j.scienta.2003.07.005CrossrefGoogle Scholar

  • [38] Hazarika B.N., Morpho-physiological disorders in in vitro culture of plants, Sci. Hortic., 2006, 108, 105–120 http://dx.doi.org/10.1016/j.scienta.2006.01.038CrossrefGoogle Scholar

  • [39] Dae K.Y., Kim H.J., Yoon S.H., Induction of Phenolics and Terpenoids in Edible Plants Using Plant Stress Responses, In: Hou C.T., Shaw J.F., (Eds.), Biocatalysis and Agricultural Biotechnology, CRC Press, 2009, 249–258 Google Scholar

  • [40] Siddique I., Anis M., An improved plant regeneration system and ex vitro acclimatization of Ocimum basilicum L., Acta Physiol. Plant., 2008, 30, 493–499 http://dx.doi.org/10.1007/s11738-008-0146-6CrossrefGoogle Scholar

  • [41] Van Staden J., Zazimalova E., George E.F., Plant growth regulators II: Cytokinins, their analogues and antagonists, In: George E.F., Hall M.A., De Klerk G.J., (Eds.), Plant Propagation by Tissue Culture, 3rd Ed., Springer, Dordrecht, The Netherlands, 2008, 205–226 Google Scholar

  • [42] Lucchesini M., Bertoli A., Mensuali-Sodi A., Pistelli L., Establishment of in vitro tissue cultures from Echinacea angustifolia D.C. adult plants for the production of phytochemical compounds, Sci. Hort., 2009, 122, 484–490 http://dx.doi.org/10.1016/j.scienta.2009.06.011CrossrefGoogle Scholar

  • [43] Nguyen P., Niemeyer E., Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.), J. Agric. Food Chem., 2008, 56, 8685–8691 http://dx.doi.org/10.1021/jf801485uCrossrefGoogle Scholar

  • [44] Taha H.S., Abd El-Rahman R.A., Fathalla Abd-El-Kareem M., Aly U.E., Successful application for enhancement and production of anthocyantn pigment from calli cultures of some ornamental plants, Aust. J. Basic Appl. Sci., 2008, 2, 1148–1156 Google Scholar

  • [45] Moschopoulou G., Kintzios S., Achievement of thousand-fold accumulation of rosmarinic acid in immobilized cells of sweet basil (Ocimum basilicum L.) by ten-fold increase of the volume of the immobilization matrix, J. Biol. Res., 2011, 15, 59–65 Google Scholar

  • [46] Collin H.A., Secondary product formation in plant tissue cultures, Plant Growth Regul., 2001, 34, 19–134 http://dx.doi.org/10.1023/A:1013374417961CrossrefGoogle Scholar

  • [47] Karam N.S., Jawad F.M., Arikat N.A., Shibli R.A., Growth and rosmarinic acid accumulation in callus, cell suspension, and root cultures of wild Salvia fruticosa, Plant Cell, Tissue and Organ Cult., 2003, 73, 117–121 http://dx.doi.org/10.1023/A:1022806420209CrossrefGoogle Scholar

  • [48] Papageorgiou V., Mallouchos A., Komaitis M., Investigation of the Antioxidant Behavior of Air- and Freeze-Dried Aromatic Plant Materials in Relation to Their Phenolic Content and Vegetative Cycle, J. Agric. Food Chem., 2008, 56, 5743–5752 http://dx.doi.org/10.1021/jf8009393CrossrefGoogle Scholar

  • [49] Fletcher R.S., Slimmon T., Kott L.S., Environmental factors affecting the accumulation of rosmarinic acid in Spearmint (Mentha spicata L.) and Peppermint (Mentha piperita L.), The Open Agric. J., 2010, 4, 10–16 http://dx.doi.org/10.2174/1874331501004010010CrossrefGoogle Scholar

  • [50] Hakkim F.L., Shankar C.G., Girua S., Chemical composition and antioxidant property of holy basil (Ocimum sanctum L.) leaves, stems, and inflorescence and their in vitro callus cultures., J. Agric. Food Chem., 2007, 55, 9109–9117 http://dx.doi.org/10.1021/jf071509hCrossrefGoogle Scholar

  • [51] Van Staden J., Fennell C.W., Taylor N.J., Plant stress in vitro: the role of phytohormones, Acta Hort., 2004, 725, 55–61 Google Scholar

  • [52] Kovač M., Ravnikar M., Sucrose and jasmonic acid interact in photosynthetic pigment metabolism and development of potato (Solanum tuberosum L. cv. Sante) grown in vitro, Plant Growth Regul., 1998, 24, 101–107 http://dx.doi.org/10.1023/A:1005965626250CrossrefGoogle Scholar

  • [53] Neill S.O., Gould K.S., Anthocyanins in leaves: light attenuators or antioxidants, Functional Plant Biol., 2003, 30, 865–873 http://dx.doi.org/10.1071/FP03118CrossrefGoogle Scholar

  • [54] Lucchesini M., Monteforti G., Mensuali-Sodi A., Serra G., Leaf ultrastructure, photosynthetic rate and growth of myrtle plantlets under different in vitro culture conditions, Biol. Plant., 2006, 50, 161–168 http://dx.doi.org/10.1007/s10535-006-0001-9CrossrefGoogle Scholar

  • [55] Petersen M., Hans J., Matern U., Biosynthesis of Phenylpropanoids and Related Compounds, In: Wink M., (Ed.), Annual Plant Reviews: Biochemistry of Plant Secondary Metabolism, Vol. 40, 2nd Ed., Wiley-Blackwell, Oxford, UK, 2010, 182–230 http://dx.doi.org/10.1002/9781444320503.ch4CrossrefGoogle Scholar

  • [56] Yamazaki M., Nakajima J., Yamanashi M., Sugiyama M., Makita Y., Springob K., et al., Metabolomics and differential gene expression in anthocyanins chemo-varietal forms of Perilla frutescens, Phytochemistry, 2003, 62, 987–995 http://dx.doi.org/10.1016/S0031-9422(02)00721-5CrossrefGoogle Scholar

About the article

Published Online: 2011-11-23

Published in Print: 2011-12-01

Citation Information: Open Life Sciences, Volume 6, Issue 6, Pages 946–957, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-011-0057-1.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

M. Puccinelli, F. Malorgio, R. Maggini, I. Rosellini, and B. Pezzarossa
Acta Horticulturae, 2019, Number 1242, Page 663
Munazza Nazir, Duangjai Tungmunnithum, Shankhamala Bose, Samantha Drouet, Laurine Garros, Nathalie Giglioli-Guivarc’h, Bilal Haider Abbasi, and Christophe Hano
Journal of Agricultural and Food Chemistry, 2019, Volume 67, Number 7, Page 1847
Javid A. Parray, Azra N. Kamili, Sumira Jan, Mohammad Yaseen Mir, Nowsheen Shameem, Bashir A. Ganai, Elsayed Fathi Abd_Allah, Abeer Hashem, and Abdulaziz A. Alqarawi
BioMed Research International, 2018, Volume 2018, Page 1
Na Lu, Emmanuel L. Bernardo, Chayanit Tippayadarapanich, Michiko Takagaki, Natsuko Kagawa, and Wataru Yamori
Frontiers in Plant Science, 2017, Volume 8
Chenin Treftz and Stanley T. Omaye
Food and Nutrition Sciences, 2015, Volume 06, Number 09, Page 805
Ralitsa Veleva, Bela Petkova, Veselina Moskova-Doumanova, Jordan Doumanov, Milena Dimitrova, Petya Koleva, Kirilka Mladenova, Svetla Petrova, Zhenya Yordanova, Veneta Kapchina-Toteva, and Tanya Topouzova-Hristova
Biotechnology & Biotechnological Equipment, 2015, Volume 29, Number 1, Page 181
Shivani Srivastava, David M. Cahill, Xavier A. Conlan, and Alok Adholeya
Journal of Agricultural and Food Chemistry, 2014, Volume 62, Number 41, Page 10064
C. Kiferle, M. Lucchesini, R. Maggini, A. Pardossi, and A. Mensuali-Sodi
Biologia Plantarum, 2014, Volume 58, Number 4, Page 601
Marco Landi, Damiano Remorini, Alberto Pardossi, and Lucia Guidi
Journal of Plant Nutrition and Soil Science, 2013, Volume 176, Number 6, Page 942

Comments (0)

Please log in or register to comment.
Log in