Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 23, 2011

Trichophyton rubrum manipulates the innate immune functions of human keratinocytes

  • Luz García-Madrid EMAIL logo , María Huizar-López , Leopoldo Flores-Romo and Alfonso Islas-Rodríguez
From the journal Open Life Sciences

Abstract

Evasion or subversion of host immune responses have been shown for a variety of microorganisms, and this might be the case for Trichophyton rubrum, the most common pathogenic fungus causing chronic dermatophytosis in humans. Keratinocytes, the main epidermal cells, have important roles as a first defense against microbial challenges in local immune reactions. Epidermal keratinocytes express several Toll-like receptors and produce host defense peptides, cytokines and chemokines in response to various stimuli. We analyzed the expression of Toll-Like receptor TLR2, TLR4, TLR6, and Human Beta Defensin (HBD)-1, HBD-2, Interleukin IL-1b and IL-8 production, when exposing primary keratinocyte cultures to T. rubrum. We observed changes in size and granularity of keratinocytes stimulated with either whole conidia or conidial homogenates compared to other treatments. Intact conidia decreased keratinocytes’ TLR2 and TLR6 expression without affecting that of TLR4, while conidial homogenates increased the expression of these three receptors. Interestingly, whole conidia decreased HBD-1 and HBD-2 production, whereas conidial homogenate increased it. No changes were observed in IL-1b and IL-8 production after stimulation with conidia or conidial homogenate. CONCLUSIONS. Our results suggest that: 1) Keratinocytes can recognize and respond to cell wall components of T. rubrum; 2) Viable intact conidia inhibit TLR-2 and TLR6 expression and decrease HBD-1 and HBD-2 production; 3) Conidial homogenate from T. rubrum increases the expression of TLR2, TLR4 and TLR6 and induces HBD-1 and HBD-2 production; 4) Therefore, innate immune functions of keratinocytes as the first level of local skin immunity are apparently manipulated by T. rubrum, likely to ensure its establishment, persistence and survival.

[1] Ballesté R., Fernández N., Mousqués N., Xavier B., Arteta Z., Mernes M., et al., Dermatophytoses in assisted population from the Hygiene Institute, [Dermatofitosis en población asistida en el Instituto de Higiene], Rev Med Uruguay, 2000, 16, 232–242 (in Spanish) Search in Google Scholar

[2] Arenas R., Dermatophytoses in Mexico, [Dermatofitosis en México], Rev Iberoam Micol, 2002, 19, 63–67 (in Spanish) Search in Google Scholar

[3] Almeida S.R., Immunology of Dermatophytoses, Mycopathologia, 2008, 166, 277–283 http://dx.doi.org/10.1007/s11046-008-9103-610.1007/s11046-008-9103-6Search in Google Scholar PubMed

[4] Zaias N., Rebell G., Chronic dermatophytosis due to Trichophyton rubrum, Int. J. Dermatol., 1996, 35, 614–617 http://dx.doi.org/10.1111/j.1365-4362.1996.tb03682.x10.1111/j.1365-4362.1996.tb03682.xSearch in Google Scholar PubMed

[5] Kick G., Korting H., The definition of Trichophyton rubrum syndrome, Mycoses, 2001, 44, 167–171 http://dx.doi.org/10.1046/j.1439-0507.2001.00640.x10.1046/j.1439-0507.2001.00640.xSearch in Google Scholar PubMed

[6] Brasch J., Current Knowledge of host response in human tinea, Mycoses, 2009, 52, 304–312 http://dx.doi.org/10.1111/j.1439-0507.2008.01667.x10.1111/j.1439-0507.2008.01667.xSearch in Google Scholar PubMed

[7] Casanova J.L., Primary Immunodeficiences: a field in its infancy, Science, 2007, 317, 617–619 http://dx.doi.org/10.1126/science.114296310.1126/science.1142963Search in Google Scholar PubMed

[8] Bousfiha A., Casanova J.L., Primary Immunodeficiencies of protective immunity to primary infections, Clin. Immunol., 2010, 135, 204–209 http://dx.doi.org/10.1016/j.clim.2010.02.00110.1016/j.clim.2010.02.001Search in Google Scholar PubMed

[9] Campos M.R., Russo M., Almeida S.R., Stimulation, Inhibition and death of macrophages infected with Trichophyton rubrum, Microbes Infect., 2006, 8, 372–379 http://dx.doi.org/10.1016/j.micinf.2005.07.02810.1016/j.micinf.2005.07.028Search in Google Scholar PubMed

[10] Netea M., Brown G., Kullberg B., Gow N., An integrated model of the recognition of Candida albicans by the innate immune system, Nat. Rev. Microbiol., 2008, 6, 67–78 http://dx.doi.org/10.1038/nrmicro181510.1038/nrmicro1815Search in Google Scholar PubMed

[11] Diacovich L., Gorvel J.P., Bacterial manipulation of innate immunity to promote infection, Nat. Rev. Microbiol., 2010, 8, 117–128 http://dx.doi.org/10.1038/nrmicro229510.1038/nrmicro2295Search in Google Scholar PubMed

[12] Hohl T.M., Rivera A., Pamer E.G., Immunity to fungi, Curr. Op. Immunol., 2006, 18, 1–8 http://dx.doi.org/10.1016/j.coi.2005.11.01610.1016/j.coi.2005.11.016Search in Google Scholar

[13] Blake J.S., Dahl M.V., Herron M.J., Nelson R.D., An Immunoinhibitory cell wall glycoprotein (mannan) from Trichophyton rubrum, J. Invest. Dermatol., 1991, 96, 657–661 http://dx.doi.org/10.1111/1523-1747.ep1247058210.1111/1523-1747.ep12470582Search in Google Scholar PubMed

[14] Janeway C.A. Jr., Approaching the asymptote? Evolution and revolution in immunology, Cold Spring Harb. Symp. Quant. Biol., 1989, 54, 1–13 10.1101/SQB.1989.054.01.003Search in Google Scholar PubMed

[15] Medzhitov R., Innate Immunity: quo vadis?, Nat. Immunol., 2010, 11, 551–553 http://dx.doi.org/10.1038/ni0710-55110.1038/ni0710-551Search in Google Scholar PubMed

[16] Nestle F.O., Di Meglio P., Qin J., Nickoloff B., Skin Immune sentinels in health and disease, Nat. Rev. Immunol., 2009, 9, 679–691 10.1038/nri2622Search in Google Scholar PubMed PubMed Central

[17] Falkow S., I never met a microbe I didn’t like, Nat. Med., 2008, 14, 1053–1057 http://dx.doi.org/10.1038/nm1008-105310.1038/nm1008-1053Search in Google Scholar PubMed

[18] Araujo M., Castañeda E., Preparation of an antigen from Madurella mycetomatis applied to mycetoma diagnosis, [Preparación de un antígeno de Madurilla mycetomatis aplicable al diagnóstico de micetoma], Rev Iberoam Micol, 1997, 14, 31–35 (in Spanish) Search in Google Scholar

[19] López-García B., Lee P., Gallo R.L., Expression and potential function of cathelicidin antimicrobial peptides in dermatophytoses and tinea versicolor, J. Antimicrob. Chemother., 2006, 5, 877–882 http://dx.doi.org/10.1093/jac/dkl07810.1093/jac/dkl078Search in Google Scholar PubMed

[20] Lebre M.C., Human keratinocytes express functional Toll-like receptor 3, 4, 5 and 9, J. Invest. Dermatol., 2007, 127, 331–341 http://dx.doi.org/10.1038/sj.jid.570053010.1038/sj.jid.5700530Search in Google Scholar PubMed

[21] Andre G., Kulakauskas S., Chapot-Chartier M.P., Navet B., Deghrain M., Bernard E., et al., Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells, Nat. Commun, 2010, 1, 1–8 http://dx.doi.org/10.1038/ncomms102710.1038/ncomms1027Search in Google Scholar PubMed PubMed Central

[22] Willment J.A., Brown G.D., C- type lectin receptors in antifungal immunity, Cell, 2008, 16, 27–32 10.1016/j.tim.2007.10.012Search in Google Scholar PubMed

[23] Wu-Yuan C., Hashimoto T., Architecture and Chemistry of Microconidial Walls of Trichophyton mentagrophytes, J Bacteriol, 1977, 129, 1584–1592 10.1128/jb.129.3.1584-1592.1977Search in Google Scholar PubMed PubMed Central

[24] Jensen J.M., Pfeiffer S., Akaki T., Schröeder J.M., Kleine M., et al., Barrier function, epidermal differentiation and Human β-defensin 2 expression in tinea corporis, J. Invest. Dermatol., 2007, 127, 1720–1727 10.1038/sj.jid.5700788Search in Google Scholar PubMed

[25] Maranhâo F.C., Paiâo F.G., Martinez-Rossi N.M., Isolation of transcripts over-expressed in human pathogen T. rubrum during growth in keratin, Microb. Pathog., 2007, 43, 166–172 http://dx.doi.org/10.1016/j.micpath.2007.05.00610.1016/j.micpath.2007.05.006Search in Google Scholar PubMed

[26] Jin X., Qin Q., Ju L., Zhoe X., Lin Y., Qu J., Tolllike receptors (TLRs) expression and function in response to inactivate hyphae of Fusarium solani in immortalized human corneal epithelial cells, Mol. Vision, 2007, 13, 1953–1961 Search in Google Scholar

[27] Roeder A., Toll-like receptors as key mediators in innate antifungal immunity, Med. Mycol., 2004, 42, 485–498 http://dx.doi.org/10.1080/1369378040001111210.1080/13693780400011112Search in Google Scholar PubMed

[28] Romani L., Immunity to fungal infections, Nat. Rev. Immunol., 2004, 4, 1–23 http://dx.doi.org/10.1038/nri125510.1038/nri1255Search in Google Scholar PubMed

[29] Diamond G., Beckloff N., Weinberg A., Kisich K., The roles of antimicrobial peptides in Innate Host Defense, Curr. Pharm. Des., 2009, 15, 2377–2392 http://dx.doi.org/10.2174/13816120978868232510.2174/138161209788682325Search in Google Scholar PubMed PubMed Central

[30] Lu Q., Jayatilake J., Samaranayake L.P., Jin L., Hyphal invasion of Candida albicans inhibits the expression of human B-defensins in experimental oral candidiasis, J. Invest. Dermatol., 2006, 126, 2049–2056 http://dx.doi.org/10.1038/sj.jid.570034610.1038/sj.jid.5700346Search in Google Scholar PubMed

[31] Selleri S., Arnaboldi F., Palazzo M., Gariboldi S., Zanobbiu L., Opizzi E., et al., Toll-like receptors agonists regulate B-def 2 release in hair follicle, Br. J. Dermatol., 2007, 156, 1172–1177 http://dx.doi.org/10.1111/j.1365-2133.2007.07899.x10.1111/j.1365-2133.2007.07899.xSearch in Google Scholar PubMed

[32] Tani K., Adachi M., Nakamura Y., Keno R., Makimura K., Hasegawa A. et al., The effect of dermatophytes on cytokine production by human keratinocytes, Arch. Dermatol. Res., 2007, 299, 331–387 http://dx.doi.org/10.1007/s00403-007-0780-710.1007/s00403-007-0780-7Search in Google Scholar PubMed

Published Online: 2011-11-23
Published in Print: 2011-12-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-011-0060-6/html
Scroll to top button