Jump to ContentJump to Main Navigation
Show Summary Details

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year


IMPACT FACTOR increased in 2015: 0.814
5-year IMPACT FACTOR: 0.870

SCImago Journal Rank (SJR) 2015: 0.362
Source Normalized Impact per Paper (SNIP) 2015: 0.538
Impact per Publication (IPP) 2015: 0.929

Open Access
Online
ISSN
2391-5412
See all formats and pricing



Select Volume and Issue

Issues

Hepatitis C virus entry into the hepatocyte

Sandrine Belouzard
  • Pasteur Institute of Lille, Center for Infection & Immunity of Lille (CIIL), F-59019, Lille, France
  • Inserm U1019, F-59019, Lille, France
  • CNRS UMR8204, F-59021, Lille, France
  • University Lille North of France, F-59000, Lille, France
  • :
/ Laurence Cocquerel
  • Pasteur Institute of Lille, Center for Infection & Immunity of Lille (CIIL), F-59019, Lille, France
  • Inserm U1019, F-59019, Lille, France
  • CNRS UMR8204, F-59021, Lille, France
  • University Lille North of France, F-59000, Lille, France
  • :
/ Jean Dubuisson
  • Pasteur Institute of Lille, Center for Infection & Immunity of Lille (CIIL), F-59019, Lille, France
  • Inserm U1019, F-59019, Lille, France
  • CNRS UMR8204, F-59021, Lille, France
  • University Lille North of France, F-59000, Lille, France
  • :
Published Online: 2011-11-23 | DOI: https://doi.org/10.2478/s11535-011-0076-y

Abstract

Hepatitis C virus (HCV) is a small enveloped virus with a positive stranded RNA genome belonging to the Flaviviridae family. The virion has the unique ability of forming a complex with lipoproteins, which is known as the lipoviroparticle. Lipoprotein components as well as the envelope proteins, E1 and E2, play a key role in virus entry into the hepatocyte. HCV entry is a complex multistep process involving sequential interactions with several cell surface proteins. The virus relies on glycosaminoglycans and possibly the low-density lipoprotein receptors to attach to cells. Furthermore, four specific entry factors are involved in the following steps which lead to virus internalization and fusion in early endosomes. These molecules are the scavenger receptor SRB1, tetraspanin CD81 and two tight junction proteins, Claudin-1 and Occludin. Although they are essential to HCV entry, the precise role of these molecules is not completely understood. Finally, hepatocytes are highly polarized cells and which likely affects the entry process. Our current knowledge on HCV entry is summarized in this review.

Keywords: Hepatitis C virus; Virus entry; Viral receptor; Membrane proteins

  • [1] Moradpour D., Penin F., Rice C.M., Replication of hepatitis C virus, Nat Rev Microbiol, 2007, 5, 453–463 http://dx.doi.org/10.1038/nrmicro1645 [Crossref]

  • [2] Bartenschlager R., Penin F., Lohmann V., Andre P., Assembly of infectious hepatitis C virus particles, Trends Microbiol, 2011, 19, 95–103 http://dx.doi.org/10.1016/j.tim.2010.11.005 [Crossref]

  • [3] Bartosch B., Cosset F.L., Studying HCV cell entry with HCV pseudoparticles (HCVpp), Methods Mol Biol, 2009, 510, 279–293 http://dx.doi.org/10.1007/978-1-59745-394-3_21 [Crossref]

  • [4] Bartenschlager R., Hepatitis C virus molecular clones: from cDNA to infectious virus particles in cell culture, Curr Opin Microbiol, 2006, 9, 416–422 http://dx.doi.org/10.1016/j.mib.2006.06.012 [Crossref]

  • [5] Bartosch B., Dubuisson J., Recent advances in hepatitis C virus entry, Viruses, 2010, 2, 692–709 http://dx.doi.org/10.3390/v2030692 [Crossref]

  • [6] Lavie M., Goffard A., Dubuisson J., Assembly of a functional HCV glycoprotein heterodimer, Curr Issues Mol Biol, 2007, 9, 71–86

  • [7] Vieyres G., Thomas X., Descamps V., Duverlie G., Patel A.H., Dubuisson J., Characterization of the envelope glycoproteins associated with infectious hepatitis C virus, J Virol, 2010, 84, 10159–10168 http://dx.doi.org/10.1128/JVI.01180-10 [Crossref]

  • [8] Pecheur E.I., Diaz O., Molle J., Icard V., Bonnafous P., Lambert O., et al., Morphological characterization and fusion properties of triglyceride-rich lipoproteins obtained from cells transduced with hepatitis C virus glycoproteins, J Biol Chem, 2010, 285, 25802–25811 http://dx.doi.org/10.1074/jbc.M110.131664 [Crossref]

  • [9] Kielian M., Rey F.A., Virus membrane-fusion proteins: more than one way to make a hairpin, Nat Rev Microbiol, 2006, 4, 67–76 http://dx.doi.org/10.1038/nrmicro1326 [Crossref]

  • [10] Albecka A., Montserret R., Krey T., Tarr A.W., Diesis E., Ball J.K., et al., Identification of new functional regions in hepatitis C virus envelope glycoprotein E2, J Virol, 2011, 85, 1777–1792 http://dx.doi.org/10.1128/JVI.02170-10 [Crossref]

  • [11] Krey T., d’Alayer J., Kikuti C.M., Saulnier A., Damier-Piolle L., Petitpas I., et al., The disulfide bonds in glycoprotein E2 of hepatitis C virus reveal the tertiary organization of the molecule, PLoS Pathog, 2010, 6, e1000762 http://dx.doi.org/10.1371/journal.ppat.1000762 [Crossref]

  • [12] Drummer H.E., Poumbourios P., Hepatitis C virus glycoprotein E2 contains a membrane-proximal heptad repeat sequence that is essential for E1E2 glycoprotein heterodimerization and viral entry, J Biol Chem, 2004, 279, 30066–30072 http://dx.doi.org/10.1074/jbc.M405098200 [Crossref]

  • [13] Scarselli E., Ansuini H., Cerino R., Roccasecca R.M., Acali S., Filocamo G., et al., The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus, EMBO J, 2002, 21, 5017–5025 http://dx.doi.org/10.1093/emboj/cdf529 [Crossref]

  • [14] Prentoe J., Jensen T.B., Meuleman P., Serre S.B., Scheel T.K., Leroux-Roels G., et al., Hypervariable region 1 differentially impacts viability of hepatitis C virus strains of genotypes 1 to 6 and impairs virus neutralization, J Virol, 2011, 85, 2224–2234 http://dx.doi.org/10.1128/JVI.01594-10 [Crossref]

  • [15] Bankwitz D., Steinmann E., Bitzegeio J., Ciesek S., Friesland M., Herrmann E., et al., Hepatitis C virus hypervariable region 1 modulates receptor interactions, conceals the CD81 binding site, and protects conserved neutralizing epitopes, J Virol, 2010, 84, 5751–5763 http://dx.doi.org/10.1128/JVI.02200-09 [Crossref]

  • [16] Helle F., Goffard A., Morel V., Duverlie G., McKeating J., Keck Z.Y., et al., The neutralizing activity of anti-hepatitis C virus antibodies is modulated by specific glycans on the E2 envelope protein, J Virol, 2007, 81, 8101–8111 http://dx.doi.org/10.1128/JVI.00127-07 [Crossref]

  • [17] McCaffrey K., Gouklani H., Boo I., Poumbourios P., Drummer H.E., The variable regions of hepatitis C virus glycoprotein E2 have an essential structural role in glycoprotein assembly and virion infectivity, J Gen Virol, 2011, 92, 112–121 http://dx.doi.org/10.1099/vir.0.026385-0 [Crossref]

  • [18] Helle F., Vieyres G., Elkrief L., Popescu C.I., Wychowski C, Descamps V., et al., Role of N-linked glycans in the functions of hepatitis C virus envelope proteins incorporated into infectious virions, J Virol, 2010, 84, 11905–11915 http://dx.doi.org/10.1128/JVI.01548-10 [Crossref]

  • [19] Andre P., Perlemuter G., Budkowska A., Brechot C., Lotteau V., Hepatitis C virus particles and lipoprotein metabolism, Semin Liver Dis, 2005, 25, 93–104 http://dx.doi.org/10.1055/s-2005-864785 [Crossref]

  • [20] Merz A., Long G., Hiet M.S., Brugger B., Chlanda P., Andre P., et al., Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome, J Biol Chem, 2011, 286, 3018–3032 http://dx.doi.org/10.1074/jbc.M110.175018 [Crossref]

  • [21] Andreo U., Maillard P., Kalinina O., Walic M., Meurs E., Martinot M., et al., Lipoprotein lipase mediates hepatitis C virus (HCV) cell entry and inhibits HCV infection, Cell Microbiol, 2007, 9, 2445–2456 http://dx.doi.org/10.1111/j.1462-5822.2007.00972.x [Crossref]

  • [22] Shimizu Y., Hishiki T., Sugiyama K., Ogawa K., Funami K., Kato A., et al., Lipoprotein lipase and hepatic triglyceride lipase reduce the infectivity of hepatitis C virus (HCV) through their catalytic activities on HCV-associated lipoproteins, Virology, 2010, 407, 152–159 http://dx.doi.org/10.1016/j.virol.2010.08.011 [Crossref]

  • [23] Chang K.S., Jiang J., Cai Z., Luo G., Human apolipoprotein e is required for infectivity and production of hepatitis C virus in cell culture, J Virol, 2007, 81, 13783–13793 http://dx.doi.org/10.1128/JVI.01091-07 [Crossref]

  • [24] Hishiki T., Shimizu Y., Tobita R., Sugiyama K., Ogawa K., Funami K., et al., Infectivity of hepatitis C virus is influenced by association with apolipoprotein E isoforms, J Virol, 2010, 84, 12048–12057 http://dx.doi.org/10.1128/JVI.01063-10 [Crossref]

  • [25] Meunier J.C., Russell R.S., Engle R.E., Faulk K.N., Purcell R.H., Emerson S.U., Apolipoprotein c1 association with hepatitis C virus, J Virol, 2008, 82, 9647–9656 http://dx.doi.org/10.1128/JVI.00914-08 [Crossref]

  • [26] Dubuisson J., Helle F., Cocquerel L., Early steps of the hepatitis C virus life cycle, Cell Microbiol, 2008, 10, 821–827 http://dx.doi.org/10.1111/j.1462-5822.2007.01107.x [Crossref]

  • [27] Helle F., Dubuisson J., Hepatitis C virus entry into host cells, Cell Mol Life Sci, 2008, 65, 100–112 http://dx.doi.org/10.1007/s00018-007-7291-8 [Crossref]

  • [28] Catanese M.T., Ansuini H., Graziani R., Huby T., Moreau M., Ball J.K., et al., Role of scavenger receptor class B type I in hepatitis C virus entry: kinetics and molecular determinants, J Virol, 2010, 84, 34–43 http://dx.doi.org/10.1128/JVI.02199-08 [Crossref]

  • [29] Dreux M., Dao Thi V.L., Fresquet J., Guerin M., Julia Z., Verney G., et al., Receptor complementation and mutagenesis reveal SR-BI as an essential HCV entry factor and functionally imply its intra- and extra-cellular domains, PLoS Pathog, 2009, 5, e1000310 http://dx.doi.org/10.1371/journal.ppat.1000310 [Crossref]

  • [30] Eyre N.S., Drummer H.E., Beard M.R., The SR-BI partner PDZK1 facilitates hepatitis C virus entry, PLoS Pathog, 2010, 6, e1001130 http://dx.doi.org/10.1371/journal.ppat.1001130 [Crossref]

  • [31] Zeisel M.B., Koutsoudakis G., Schnober E.K., Haberstroh A., Blum H.E., Cosset F.L., et al., Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81, Hepatology, 2007, 46, 1722–1731 http://dx.doi.org/10.1002/hep.21994 [Crossref]

  • [32] Maillard P., Huby T., Andreo U., Moreau M., Chapman J., Budkowska A., The interaction of natural hepatitis C virus with human scavenger receptor SR-BI/Cla1 is mediated by ApoB-containing lipoproteins, FASEB J, 2006, 20, 735–737

  • [33] Dorner M., Horwitz J.A., Robbins J.B., Barry W.T., Feng Q., Mu K., et al., A genetically humanized mouse model for hepatitis C virus infection, Nature, 2011, 474, 208–211 http://dx.doi.org/10.1038/nature10168 [Crossref]

  • [34] Pileri P., Uematsu Y., Campagnoli S., Galli G., Falugi F., Petracca R., et al., Binding of hepatitis C virus to CD81, Science, 1998, 282, 938–941 http://dx.doi.org/10.1126/science.282.5390.938 [Crossref]

  • [35] Zhang J., Randall G., Higginbottom A., Monk P., Rice C.M., McKeating J.A., CD81 is required for hepatitis C virus glycoprotein-mediated viral infection, J Virol, 2004, 78, 1448–1455 http://dx.doi.org/10.1128/JVI.78.3.1448-1455.2004 [Crossref]

  • [36] Kitadokoro K., Bordo D., Galli G., Petracca R., Falugi F., Abrignani S., et al., CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs, EMBO J, 2001, 20, 12–18 http://dx.doi.org/10.1093/emboj/20.1.12 [Crossref]

  • [37] Akazawa D., Date T., Morikawa K., Murayama A., Miyamoto M., Kaga M., et al., CD81 expression is important for the permissiveness of Huh7 cell clones for heterogeneous hepatitis C virus infection, J Virol, 2007, 81, 5036–5045 http://dx.doi.org/10.1128/JVI.01573-06 [Crossref]

  • [38] Koutsoudakis G., Herrmann E., Kallis S., Bartenschlager R., Pietschmann T., The level of CD81 cell surface expression is a key determinant for productive entry of hepatitis C virus into host cells, J Virol, 2007, 81, 588–598 http://dx.doi.org/10.1128/JVI.01534-06 [Crossref]

  • [39] Roohvand F., Maillard P., Lavergne J.P., Boulant S., Walic M., Andreo U., et al., Initiation of hepatitis C virus infection requires the dynamic microtubule network: role of the viral nucleocapsid protein, J Biol Chem, 2009, 284, 13778–13791 http://dx.doi.org/10.1074/jbc.M807873200 [Crossref]

  • [40] Rocha-Perugini V., Lavie M., Delgrange D., Canton J., Pillez A., Potel J., et al., The association of CD81 with tetraspanin-enriched microdomains is not essential for Hepatitis C virus entry, BMC Microbiol, 2009, 9, 111 http://dx.doi.org/10.1186/1471-2180-9-111 [Crossref]

  • [41] Silvie O., Charrin S., Billard M., Franetich J.F., Clark K.L., van Gemert G.J., et al., Cholesterol contributes to the organization of tetraspaninenriched microdomains and to CD81-dependent infection by malaria sporozoites, J Cell Sci, 2006, 119, 1992–2002 http://dx.doi.org/10.1242/jcs.02911 [Crossref]

  • [42] Rocha-Perugini V., Montpellier C., Delgrange D., Wychowski C., Helle F., Pillez A., et al., The CD81 partner EWI-2wint inhibits hepatitis C virus entry, PLoS ONE, 2008, 3, e1866 http://dx.doi.org/10.1371/journal.pone.0001866 [Crossref]

  • [43] Montpellier C., Tews B.A., Poitrimole J., Rocha-Perugini V., D’Arienzo V., Potel J., et al., Interacting regions of CD81 and two of its partners, EWI-2 and EWI-2wint and their effect on Hepatitis C Virus infection, J Biol Chem, 2011, 286, 13954–13965 http://dx.doi.org/10.1074/jbc.M111.220103 [Crossref]

  • [44] Tsukita S., Furuse M., Itoh M., Multifunctional strands in tight junctions, Nat Rev Mol Cell Biol, 2001, 2, 285–293 http://dx.doi.org/10.1038/35067088 [Crossref]

  • [45] Furuse M., Molecular basis of the core structure of tight junctions, Cold Spring Harb Perspect Biol, 2010, 2, a002907 http://dx.doi.org/10.1101/cshperspect.a002907 [Crossref]

  • [46] Evans M.J., von Hahn T., Tscherne D.M., Syder A.J., Panis M., Wolk B., et al., Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry, Nature, 2007, 446 801–805 http://dx.doi.org/10.1038/nature05654 [Crossref]

  • [47] Ploss A., Evans M.J., Gaysinskaya V.A., Panis M., You H., de Jong Y.P., et al., Human occludin is a hepatitis C virus entry factor required for infection of mouse cells, Nature, 2009, 457, 882–886 http://dx.doi.org/10.1038/nature07684 [Crossref]

  • [48] Fofana I., Krieger S.E., Grunert F., Glauben S., Xiao F., Fafi-Kremer S., et al., Monoclonal anti-claudin 1 antibodies prevent hepatitis C virus infection of primary human hepatocytes, Gastroenterology, 2010, 139, 953–964 http://dx.doi.org/10.1053/j.gastro.2010.05.073 [Crossref]

  • [49] Zheng A., Yuan F., Li Y., Zhu F., Hou P., Li J., et al., Claudin-6 and claudin-9 function as additional coreceptors for hepatitis C virus, J Virol, 2007, 81, 12465–12471 http://dx.doi.org/10.1128/JVI.01457-07 [Crossref]

  • [50] Meertens L., Bertaux C., Cukierman L., Cormier E., Lavillette D., Cosset F.L., et al., The tight junction proteins claudin-1, -6, and -9 are entry cofactors for hepatitis C virus, J Virol, 2008, 82, 3555–3560 http://dx.doi.org/10.1128/JVI.01977-07 [Crossref]

  • [51] Cukierman L., Meertens L., Bertaux C., Kajumo F., Dragic T., Residues in a highly conserved claudin-1 motif are required for hepatitis C virus entry and mediate the formation of cell-cell contacts, J Virol, 2009, 83, 5477–5484 http://dx.doi.org/10.1128/JVI.02262-08 [Crossref]

  • [52] Haid S., Windisch M.P., Bartenschlager R., Pietschmann T., Mouse-specific residues of claudin-1 limit hepatitis C virus genotype 2a infection in a human hepatocyte cell line, J Virol, 2010, 84, 964–975 http://dx.doi.org/10.1128/JVI.01504-09 [Crossref]

  • [53] Benedicto I., Molina-Jimenez F., Bartosch B., Cosset F.L., Lavillette D., Prieto J., et al., The tight junction-associated protein occludin is required for a postbinding step in hepatitis C virus entry and infection., J Virol, 2009, 83, 8012–8020 http://dx.doi.org/10.1128/JVI.00038-09 [Crossref]

  • [54] Liu S., Yang W., Shen L., Turner J.R., Coyne C.B., Wang T., Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection, J Virol, 2009, 83, 2011–2014 http://dx.doi.org/10.1128/JVI.01888-08 [Crossref]

  • [55] Michta M.L., Hopcraft S.E., Narbus C.M., Kratovac Z., Israelow B., Sourisseau M., et al., Species-specific regions of occludin required by hepatitis C virus for cell entry, J Virol, 2010, 84, 11696–11708 http://dx.doi.org/10.1128/JVI.01555-10 [Crossref]

  • [56] Ciesek S., Steinmann E., Iken M., Ott M., Helfritz F.A., Wappler I., et al., Glucocorticosteroids increase cell entry by hepatitis C virus, Gastroenterology, 2010, 138, 1875–1884 http://dx.doi.org/10.1053/j.gastro.2010.02.004 [Crossref]

  • [57] Benedicto I., Molina-Jimenez F., Barreiro O., Maldonado-Rodriguez A., Prieto J., Moreno-Otero R., et al., Hepatitis C virus envelope components alter localization of hepatocyte tight junction-associated proteins and promote occludin retention in the endoplasmic reticulum, Hepatology, 2008, 48, 1044–1053 http://dx.doi.org/10.1002/hep.22465 [Crossref]

  • [58] Zeisel M.B., Fofana I., Fafi-Kremer S., Baumert T.F., Hepatitis C virus entry into hepatocytes: Molecular mechanisms and targets for antiviral therapies, J Hepatol, 2011, 54, 566–576 http://dx.doi.org/10.1016/j.jhep.2010.10.014 [Crossref]

  • [59] Molina S., Castet V., Fournier-Wirth C., Pichard-Garcia L., Avner R., Harats D., et al., The low-density lipoprotein receptor plays a role in the infection of primary human hepatocytes by hepatitis C virus, J Hepatol, 2007, 46, 411–419 http://dx.doi.org/10.1016/j.jhep.2006.09.024 [Crossref]

  • [60] Owen D.M., Huang H., Ye J., Gale M., Jr., Apolipoprotein E on hepatitis C virion facilitates infection through interaction with low-density lipoprotein receptor, Virology, 2009, 394, 99–108 http://dx.doi.org/10.1016/j.virol.2009.08.037 [Crossref]

  • [61] Harris H.J., Farquhar M.J., Mee C.J., Davis C., Reynolds G.M., Jennings A., et al., CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry, J Virol, 2008, 82, 5007–5020 http://dx.doi.org/10.1128/JVI.02286-07 [Crossref]

  • [62] Harris H.J., Davis C., Mullins J.G., Hu K., Goodall M., Farquhar M.J., et al., Claudin association with CD81 defines hepatitis C virus entry, J Biol Chem, 2010, 285, 21092–21102 http://dx.doi.org/10.1074/jbc.M110.104836 [Crossref]

  • [63] Krieger S.E., Zeisel M.B., Davis C., Thumann C., Harris H.J., Schnober E.K., et al., Inhibition of hepatitis C virus infection by anti-claudin-1 antibodies is mediated by neutralization of E2-CD81-claudin-1 associations, Hepatology, 2010, 51, 1144–1157 http://dx.doi.org/10.1002/hep.23445 [Crossref]

  • [64] Lupberger J., Zeisel M.B., Xiao F., Thumann C., Fofana I., Zona L., et al., EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy, Nat Med, 2011, 17, 589–595 http://dx.doi.org/10.1038/nm.2341 [Crossref]

  • [65] Coller K.E., Berger K.L., Heaton N.S., Cooper J.D., Yoon R., Randall G., RNA interference and single particle tracking analysis of hepatitis C virus endocytosis, PLoS Pathog, 2009, 5, e1000702 http://dx.doi.org/10.1371/journal.ppat.1000702 [Crossref]

  • [66] Brazzoli M., Bianchi A., Filippini S., Weiner A., Zhu Q., Pizza M., et al., CD81 is a central regulator of cellular events required for hepatitis C virus infection of human hepatocytes, J Virol, 2008, 82, 8316–8329 http://dx.doi.org/10.1128/JVI.00665-08 [Crossref]

  • [67] Blanchard E., Belouzard S., Goueslain L., Wakita T., Dubuisson J., Wychowski C., et al., Hepatitis C virus entry depends on clathrin-mediated endocytosis, J Virol, 2006, 80, 6964–6972 http://dx.doi.org/10.1128/JVI.00024-06 [Crossref]

  • [68] Meertens L., Bertaux C., Dragic T., Hepatitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin-coated vesicles, J Virol, 2006, 80, 11571–11578 http://dx.doi.org/10.1128/JVI.01717-06 [Crossref]

  • [69] Veiga E., Cossart P., Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells, Nat Cell Biol, 2005, 7, 894–900 http://dx.doi.org/10.1038/ncb1292 [Crossref]

  • [70] Reynolds G.M., Harris H.J., Jennings A., Hu K., Grove J., Lalor P.F., et al., Hepatitis C virus receptor expression in normal and diseased liver tissue, Hepatology, 2008, 47, 418–427 http://dx.doi.org/10.1002/hep.22028 [Crossref]

  • [71] Mee C.J., Harris H.J., Farquhar M.J., Wilson G., Reynolds G., Davis C., et al., Polarization restricts hepatitis C virus entry into HepG2 hepatoma cells, J Virol, 2009, 83, 6211–6221 http://dx.doi.org/10.1128/JVI.00246-09 [Crossref]

  • [72] Schwarz A.K., Grove J., Hu K., Mee C.J., Balfe P., McKeating J.A., Hepatoma cell density promotes claudin-1 and scavenger receptor BI expression and hepatitis C virus internalization, J Virol, 2009, 83, 12407–12414 http://dx.doi.org/10.1128/JVI.01552-09 [Crossref]

  • [73] Mee C.J., Grove J., Harris H.J., Hu K., Balfe P., McKeating J.A., Effect of cell polarization on hepatitis C virus entry., J Virol, 2008, 82, 461–470 http://dx.doi.org/10.1128/JVI.01894-07 [Crossref]

  • [74] Timpe J.M., Stamataki Z., Jennings A., Hu K., Farquhar M.J., Harris H.J., et al., Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies, Hepatology, 2008, 47, 17–24 http://dx.doi.org/10.1002/hep.21959 [Crossref]

  • [75] Witteveldt J., Evans M.J., Bitzegeio J., Koutsoudakis G., Owsianka A.M., Angus A.G., et al., CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells, J Gen Virol, 2009, 90, 48–58 http://dx.doi.org/10.1099/vir.0.006700-0 [Crossref]

  • [76] Jones C.T., Catanese M.T., Law L.M., Khetani S.R., Syder A.J., Ploss A., et al., Real-time imaging of hepatitis C virus infection using a fluorescent cell-based reporter system, Nat Biotechnol, 2010, 28, 167–171 http://dx.doi.org/10.1038/nbt.1604 [Crossref]

  • [77] Brimacombe C.L., Grove J., Meredith L.W., Hu K., Syder A.J., Flores M.V., et al., Neutralizing antibody-resistant hepatitis C virus cell-to-cell transmission, J Virol, 2011, 85, 596–605 http://dx.doi.org/10.1128/JVI.01592-10 [Crossref]

  • [78] Meuleman P., Hesselgesser J., Paulson M., Vanwolleghem T., Desombere I., Reiser H., et al., Anti-CD81 antibodies can prevent a hepatitis C virus infection in vivo, Hepatology, 2008, 48, 1761–1768 http://dx.doi.org/10.1002/hep.22547 [Crossref]

  • [79] Russell R.S., Meunier J.C., Takikawa S., Faulk K., Engle R.E., Bukh J., et al., Advantages of a single-cycle production assay to study cell culture-adaptive mutations of hepatitis C virus, Proc Natl Acad Sci U S A, 2008, 105, 4370–4375 http://dx.doi.org/10.1073/pnas.0800422105 [Crossref]

  • [80] Haid S., Pietschmann T., Pecheur E.I., Low pH-dependent hepatitis C virus membrane fusion depends on E2 integrity, target lipid composition, and density of virus particles, J Biol Chem, 2009, 284, 17657–17667 http://dx.doi.org/10.1074/jbc.M109.014647 [Crossref]

  • [81] Abell B.A., Brown D.T., Sindbis virus membrane fusion is mediated by reduction of glycoprotein disulfide bridges at the cell surface, J Virol, 1993, 67, 5496–5501

  • [82] Fenouillet E., Barbouche R., Jones I.M., Cell entry by enveloped viruses: redox considerations for HIV and SARS-coronavirus, Antioxid Redox Signal, 2007, 9, 1009–1034 http://dx.doi.org/10.1089/ars.2007.1639 [Crossref]


Published Online: 2011-11-23

Published in Print: 2011-12-01


Citation Information: Open Life Sciences. Volume 6, Issue 6, Pages 933–945, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-011-0076-y, November 2011

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Noémie Calland, Jean Dubuisson, Yves Rouillé, and Karin Séron
Viruses, 2012, Volume 4, Number 12, Page 2197
[2]
S. Anjum, A. Wahid, M. S. Afzal, A. Albecka, K. Alsaleh, T. Ahmad, T. F. Baumert, C. Wychowski, I. Qadri, F. Penin, and J. Dubuisson
Journal of Infectious Diseases, 2013, Volume 208, Number 11, Page 1888
[3]
Thibaut Vausselin, Noémie Calland, Sandrine Belouzard, Véronique Descamps, Florian Douam, François Helle, Catherine François, Dimitri Lavillette, Gilles Duverlie, Ahmed Wahid, Lucie Fénéant, Laurence Cocquerel, Yann Guérardel, Czeslaw Wychowski, Christophe Biot, and Jean Dubuisson
Hepatology, 2013, Volume 58, Number 1, Page 86

Comments (0)

Please log in or register to comment.