Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year

IMPACT FACTOR 2016 (Open Life Sciences): 0.448

CiteScore 2016: 1.02

SCImago Journal Rank (SJR) 2016: 0.329
Source Normalized Impact per Paper (SNIP) 2016: 0.621

Open Access
See all formats and pricing
More options …
Volume 7, Issue 1 (Feb 2012)


Trichobilharzia regenti: Antigenic structures of intravertebrate stages

Marta Chanová
  • Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University in Prague, 128 00, Prague, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lucie Lichtenbergová
  • Department of Parasitology, Faculty of Science, Charles University in Prague, 128 44, Prague, Czech Republic
  • Department of Microbiology, 3rd Faculty of Medicine, Charles University in Prague, 100 34, Prague, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jana Bulantová / Libor Mikeš / Petr Horák
Published Online: 2011-12-25 | DOI: https://doi.org/10.2478/s11535-011-0074-0


Like several other bird schistosomes, neurotropic schistosome of Trichobilharzia regenti can invade also mammals, including humans. Repeated infections cause cercarial dermatitis, a skin inflammatory reaction leading to parasite elimination in non-specific mammalian hosts. However, in experimentally primo-infected mice, the worms escape from the skin and migrate to the central nervous system. In order to evade host immune reactions, schistosomes undergo cercaria/schistosomulum transformation accompanied with changes of surface antigens. The present study is focused on localization of the main antigens of T. regenti; cercariae, schistosomula developed under different conditions and adults were compared. Antigens were localized by immunofluorescence and ultrastructural immunocytochemistry using sera of mice repeatedly infected with T. regenti. Detected antibody targets were located in glycocalyx and penetration glands of cercariae and in tegument of cercariae, schistosomula and adults. Shedding of cercarial glycocalyx significantly reduced surface reactivity; further decrease was reported during ongoing development of schistosomula. Spherical bodies, probably transported from subtegumental cell bodies to worm surface, were identified as the most reactive tegumental structures. Based on similar results for schistosomula developed in specific, non-specific hosts and in vitro, it seems that the ability of T. regenti to decrease the surface immunoreactivity during ontogenesis is independent on the host type.

Keywords: Trichobilharzia regenti; Neurotropic schistosome; Immunoreactivity; Immunolocalization; Ultrastructure

  • [1] Horák P., Dvořák J., Kolářová L., Trefil L., Trichobilharzia regenti, a pathogen of the avian and mammalian central nervous systems, Parasitology, 1999, 119, 577–581 http://dx.doi.org/10.1017/S0031182099005132CrossrefGoogle Scholar

  • [2] Lichtenbergová L., Lassmann H., Jones M.K., Kolářová L., Horák P., Trichobilharzia regenti: Host immune response in the pathogenesis of neuroinfection in mice, Exp. Parasitol., 2011, 128, 328–335 http://dx.doi.org/10.1016/j.exppara.2011.04.006CrossrefGoogle Scholar

  • [3] Hrádková K., Horák P., Neurotropic behaviour of Trichobilharzia regenti in ducks and mice, J. Helminthol., 2002, 76, 137–141 http://dx.doi.org/10.1079/JOH2002113CrossrefGoogle Scholar

  • [4] Kouřilová P., Hogg K.G., Kolářová L., Mountford A.P., Cercarial dermatitis caused by bird schistosomes comprises both immediate and late phase cutaneous hypersensitivity reactions, J. Immunol., 2004, 172, 3766–3774 Google Scholar

  • [5] Lichtenbergová L., Kolbeková P., Kouřilová P., Kašný M., Mikeš L., Haas H., et al., Antibody responses induced by Trichobilharzia regenti antigens in murine and human hosts exhibiting cercarial dermatitis, Parasite Immunol., 2008, 30, 585–595 Google Scholar

  • [6] Kouřilová P., Kolářová L., Variations in immunofluorescent antibody response against Trichobilharzia and Schistosoma antigens in compatible and incompatible hosts, Parasitol. Res., 2002, 88, 513–521 http://dx.doi.org/10.1007/s00436-002-0607-6CrossrefGoogle Scholar

  • [7] Hockley D.J., McLaren D.J., Schistosoma mansoni: changes in the outer membrane of the tegument during development from cercaria to adult worm, Int. J. Parasitol., 1973, 3, 13–25 http://dx.doi.org/10.1016/0020-7519(73)90004-0CrossrefGoogle Scholar

  • [8] Horák P., Kovář L., Kolářová L., Nebesářová J., Cercaria-schistosomulum surface transformation of Trichobilharzia szidati and its putative immunological impact, Parasitology, 1998, 116, 139–147 http://dx.doi.org/10.1017/S0031182097002059CrossrefGoogle Scholar

  • [9] El Ridi R., Mohamed S.H., Tallima H., Incubation of Schistosoma mansoni lung-stage schistosomula in corn oil exposes their surface membrane antigenic specificities, J. Parasitol., 2003, 89, 1064–1067 http://dx.doi.org/10.1645/GE-3122RNCrossrefGoogle Scholar

  • [10] Lawson B.W., Bickle Q.D., Taylor M.G., Mechanisms involved in the loss of antibodymediated adherence of macrophages to lungstage schistosomula of Schistosoma mansoni in vitro, Parasitology, 1993, 106, 463–469 http://dx.doi.org/10.1017/S0031182000076757CrossrefGoogle Scholar

  • [11] Parizade M., Arnon R., Lachmann P.J., Fishelson Z., Functional and antigenic similarities between a 94-kDa protein of Schistosoma mansoni (SCIP-1) and human CD59, J. Exp. Med., 1994, 179, 1625–1636 http://dx.doi.org/10.1084/jem.179.5.1625CrossrefGoogle Scholar

  • [12] Abath F.G.C., Werkhauser R.C., The tegument of Schistosoma mansoni: functional and immunological features, Parasite Immunol., 1996, 18, 15–20 http://dx.doi.org/10.1046/j.1365-3024.1996.d01-6.xCrossrefGoogle Scholar

  • [13] Skelly P.J., Wilson A.R., Making sense of the schistosome surface, Adv. Parasit., 2006, 63, 185–284 http://dx.doi.org/10.1016/S0065-308X(06)63003-0CrossrefGoogle Scholar

  • [14] Loukas A., Tran M., Pearson M.S., Schistosome membrane proteins as vaccines, Int. J. Parasitol., 2007, 37, 257–263 http://dx.doi.org/10.1016/j.ijpara.2006.12.001CrossrefGoogle Scholar

  • [15] Chanová M., Bulantová J., Máslo P., Horák P., In vitro cultivation of early schistosomula of nasal and visceral bird schistosomes (Trichobilharzia spp., Schistosomatidae), Parasitol. Res., 2009, 104, 1445–1452 http://dx.doi.org/10.1007/s00436-009-1343-yCrossrefGoogle Scholar

  • [16] Horák P., Kolářová L., Dvořák J., Trichobilharzia regenti n. sp. (Schistosomatidae, Bilharziellinae) a new nasal schistosome from Europe, Parasite, 1998, 5, 349–357 CrossrefGoogle Scholar

  • [17] Marikovsky M., Arnon R., Fishelson Z., Proteases secreted by transforming schistosomula of Schistosoma mansoni promote resistance to killing by complement, J. Immunol., 1988, 141, 273–278 Google Scholar

  • [18] McKerrow J.H., Jones P., Sage H., Pino-Heiss S., Proteinases from invasive larvae of the trematode parasite Schistosoma mansoni degrade connective-tissue and basement-membrane macromolecules, Biochem. J., 1985, 231, 47–51 Google Scholar

  • [19] Fishelson Z., Amiri P., Friend D.S., Marikovsky M., Petitt M., Newport G., et al., Schistosoma mansoni: cell-specific expression and secretion of a serine protease during development of cercariae, Exp. Parasitol., 1992, 75, 87–98 http://dx.doi.org/10.1016/0014-4894(92)90124-SCrossrefGoogle Scholar

  • [20] Ligasová A., Bulantová J., Šebesta O., Kašný M., Koberna K., Mikeš L., Secretory glands in cercariae of the neuropathogenic schistosome Trichobilharzia regenti — ultrastructural characterization, 3-D modeling, volume and pH estimations, Parasit Vectors., 2011, 4, 162 http://dx.doi.org/10.1186/1756-3305-4-162CrossrefGoogle Scholar

  • [21] Dorsey C.H., Cousin C.E., Lewis F.A., Stirewalt M.A., Ultrastructure of the Schistosoma mansoni cercariae, Micron, 2002, 33, 279–323 http://dx.doi.org/10.1016/S0968-4328(01)00019-1CrossrefGoogle Scholar

  • [22] Wilson R.A., Barnes P.E., The tegument of Schistosoma mansoni: observations on the formation, structure and composition of cytoplasmic inclusions in relation to tegument function, Parasitology, 1974, 68(2), 239–258 Google Scholar

  • [23] Gobert G.N., Stenzel D.J., McManus D.P., Jones M.K., The ultrastructural architecture of the adult Schistosoma japonicum tegument, Int. J. Parasitol., 2003, 33, 1561–1575 http://dx.doi.org/10.1016/S0020-7519(03)00255-8CrossrefGoogle Scholar

  • [24] Payares G., McLaren D.J., Evans W.H., Smithers S.R., Changes in the surface antigen profile of Schistosoma mansoni during maturation from cercaria to adult worm, Parasitology, 1985, 91, 83–99 http://dx.doi.org/10.1017/S0031182000056535CrossrefGoogle Scholar

  • [25] Pearce E.J., Basch P.F., Sher A., Evidence that the reduced surface antigenicity of developing Schistosoma mansoni schistosomula is due to antigen shedding rather than host molecule acquisition, Parasite Immunol., 1986, 8, 79–94 http://dx.doi.org/10.1111/j.1365-3024.1986.tb00835.xCrossrefGoogle Scholar

  • [26] McManus D.P., Loukas A., Current status of vaccines for Schistosomiasis, Clin. Microbiol. Rev., 2008, 21, 225–242 http://dx.doi.org/10.1128/CMR.00046-07CrossrefGoogle Scholar

  • [27] Kašný M., Lichtenbergová L., Kolářová L., Horák P., Identification and characterization of dominant antigens of the bird schistosome Trichobilharzia regenti, In: L. Mikeš, P. Horák (Eds.), Abstract Book — 3rd Workshop on Bird Schistosomes and Cercarial Dermatitis (6–10 July 2009, Rejčkov, Ledeč nad Sázavou, Czech Republic), Charles University in Prague, Faculty of Science, 2009, 21 Google Scholar

  • [28] Goudot-Crozel V., Caillol D., Djabali M., Dessein A.J., The major parasite surface antigen associated with human resistance to schistosomiasis is a 37-kD glyceraldehyde-3 P-dehydrogenase, J. Exp. Med., 1989, 170, 2065–2080 http://dx.doi.org/10.1084/jem.170.6.2065CrossrefGoogle Scholar

  • [29] Henkle K.J., Davern K.M., Wright M.D., Ramos A.J., Mitchell G.F., Comparison of the cloned genes of the 26- and 28- kilodalton S-transferases of Schistosoma japonicum and Schistosoma mansoni, Mol. Biochem. Parasitol., 1990, 40, 23–34 http://dx.doi.org/10.1016/0166-6851(90)90076-XCrossrefGoogle Scholar

  • [30] Matsumoto Y., Perry G., Levine R.J., Blanton R., Mahmoud A.A., Aikawa M., Paramyosin and actin in schistosomal teguments, Nature, 1988, 5, 76–78 http://dx.doi.org/10.1038/333076a0CrossrefGoogle Scholar

  • [31] Gobert G.N., Stenzel D.J., Jones M.K., Allen D.E., McManus D.P., Schistosoma japonicum: immunolocalization of paramyosin during development, Parasitology, 1997, 114, 45–52 http://dx.doi.org/10.1017/S0031182096008001CrossrefGoogle Scholar

  • [32] Nara T., Matsumoto N., Janecharut T., Matsuda H., Yamamoto K., Irimura T., et al., Demonstration of the target molecule of a protective IgE antibody in secretory glands of Schistosoma japonicum larvae, Int. Immunol., 1994, 6, 963–971 http://dx.doi.org/10.1093/intimm/6.7.963CrossrefGoogle Scholar

About the article

Published Online: 2011-12-25

Published in Print: 2012-02-01

Citation Information: Open Life Sciences, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-011-0074-0.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Lichtenbergová Lucie and Horák Petr
Journal of Parasitology Research, 2012, Volume 2012, Page 1

Comments (0)

Please log in or register to comment.
Log in