Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 7, Issue 1


Volume 10 (2015)

The effect of biotic and physical factors on the competitive ability of Rhizobium leguminosarum

Jerzy Wielbo / Dominika Kidaj / Piotr Koper / Agnieszka Kubik-Komar / Anna Skorupska
Published Online: 2011-12-25 | DOI: https://doi.org/10.2478/s11535-011-0085-x
  • [1] Perret X., Staehelin C., Spaink H.P., Molecular basis of symbiotic promiscuity, Microbiol. Mol. Biol. Rev., 2000, 64, 180–201 http://dx.doi.org/10.1128/MMBR.64.1.180-201.2000CrossrefGoogle Scholar

  • [2] Jones K.M., Kobayashi H., Davies B.W., Taga M.E., Walker G.C., How symbionts invade plants: the Sinorhizobium-Medicago model, Nat. Rev. Microbiol., 2007, 5, 619–633 http://dx.doi.org/10.1038/nrmicro1705CrossrefGoogle Scholar

  • [3] Masson-Boivin C., Giraud E., Perret X., Batut J., Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?, Trends Microbiol., 2009, 17, 458–466 http://dx.doi.org/10.1016/j.tim.2009.07.004CrossrefGoogle Scholar

  • [4] Timmers A.C., Soupène E., Auriac M.C., de Billy F., Vasse J., Boistard P., et al., Saprophytic intracellular rhizobia in alfalfa nodules, Mol. Plant-Microbe Interact., 2000, 13, 1204–1213 http://dx.doi.org/10.1094/MPMI.2000.13.11.1204CrossrefGoogle Scholar

  • [5] Mergaert P., Uchiumi T., Alunni B., Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis, Proc. Natl. Acad. Sci. USA, 2006, 103, 5230–5235 http://dx.doi.org/10.1073/pnas.0600912103CrossrefGoogle Scholar

  • [6] Andrade D.S., Murphy P.J., Giller K.J., The diversity of Phaseolus-nodulating rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgaris L. in Brazil, Appl. Environ. Microbiol., 2002, 68, 4025–4034 http://dx.doi.org/10.1128/AEM.68.8.4025-4034.2002CrossrefGoogle Scholar

  • [7] Martyniuk S., Oroń J., Martyniuk M., Diversity and numbers of root-nodule bacteria (rhizobia) in Polish soils, Acta Soc. Bot. Polon., 2005, 74, 83–86 Google Scholar

  • [8] Louvrier P., Laguerre G., Amarger N., Distribution of symbiotic genotypes in Rhizobium leguminosarum biovar viciae populations isolated directly from soils, Appl. Environ. Microbiol., 1996, 62, 4202–4205 Google Scholar

  • [9] Mutch L.A., Young J.P.W., Diversity and specifity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes, Mol. Ecol., 2004, 13, 2435–2444 http://dx.doi.org/10.1111/j.1365-294X.2004.02259.xCrossrefGoogle Scholar

  • [10] Silva C., Kan F.L., Martinez-Romero E., Population genetic structure of Sinorhizobium meliloti and S. medicae isolated from nodules Medicago spp. in Mexico, FEMS Microbiol. Ecol., 2007, 60, 477–489 http://dx.doi.org/10.1111/j.1574-6941.2007.00301.xCrossrefGoogle Scholar

  • [11] Palmer K.M., Young J.P.W., Higher diversity of Rhizobium leguminosarum biovar viciae populations in arable soils than in grass soils, Appl. Environ. Microbiol., 2000, 66, 2445–2450 http://dx.doi.org/10.1128/AEM.66.6.2445-2450.2000CrossrefGoogle Scholar

  • [12] Laguerre G., Courde L., Nouaim R., Lamy I., Revellin C., Breuil M.C., et al., Response of rhizobial populations to moderate copper stress applied to an agricultural soil, Microbiol. Ecol., 2006, 52, 426–435 http://dx.doi.org/10.1007/s00248-006-9081-5CrossrefGoogle Scholar

  • [13] Streeter J.G., Failure of inoculant rhizobia to overcome the dominance of indigenous strains for nodule formation, Can. J. Microbiol., 1994, 40, 513–522 http://dx.doi.org/10.1139/m94-084CrossrefGoogle Scholar

  • [14] Robertson B.K., Dreyfus B., Alexander M., Ecology of stem-nodulating Rhizobium and Azorhizobium in four vegetation zones of Senegal, Microb. Ecol., 1995, 29, 71–81 http://dx.doi.org/10.1007/BF00217424CrossrefGoogle Scholar

  • [15] Fagerli I.L., Svenning M.M., Arctic and subarctic soil populations of Rhizobium leguminosarum biovar trifolii nodulating three different clover species: characterization by diversity of chromosomal and symbiosis loci, Plant Soil, 2005, 275, 371–381 http://dx.doi.org/10.1007/s11104-005-3103-9CrossrefGoogle Scholar

  • [16] Vlassak K.M., Vanderleyden J., Factors influencing nodule occupancy by inoculant rhizobia, Crit. Rev. Plant. Sci., 1997, 16, 163–229 CrossrefGoogle Scholar

  • [17] Oresnik I.J., Pacarynuk L.A., O’Brien S.H.P., Yost C., Plasmid-encoded catabolic genes in Rhizobiubium leguminosarum bv. trifolii: evidence for a plasmid-inducible rhamnose locus involved in competition for nodulation, Mol. Plant. Microbe Interact., 1999, 1, 1175–1185 Google Scholar

  • [18] Hynes M.F., O’Connel M.P., Host plant effect on competition among strains of Rhizobium leguminosarum, Can. J. Microbiol., 1990, 36, 864–869 http://dx.doi.org/10.1139/m90-150CrossrefGoogle Scholar

  • [19] Wielbo J., Marek-Kozaczuk M., Kubik-Komar A., Skorupska A., Increased metabolic potential of Rhizobium spp. is associated with bacterial competitiveness, Can. J. Microbiol., 2007, 53, 957–967 http://dx.doi.org/10.1139/W07-053CrossrefGoogle Scholar

  • [20] Wilson R.A., Handley B.A., Beringer J.E., Bacteriocin production and resistance in a field population of Rhizobium leguminosarum bv. viciae, Soil Biol. Biochem., 1998, 30, 413–417 http://dx.doi.org/10.1016/S0038-0717(97)00123-5CrossrefGoogle Scholar

  • [21] Mabood F., Jung W.J., Smith D.L., Signals in the underground: microbial signaling and plant productivity, In: Nautiyal C.S., Dion P.E., Chopra V.L. (Eds.), Molecular mechanisms of plant and microbe coexistence, Springer-Verlag Berlin, Heidelberg, 2008, 291–318 http://dx.doi.org/10.1007/978-3-540-75575-3_12CrossrefGoogle Scholar

  • [22] Maj D., Wielbo J., Marek-Kozaczuk M., Skorupska A., Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum, Microbiol. Res., 2010, 165, 50–60 http://dx.doi.org/10.1016/j.micres.2008.06.002CrossrefGoogle Scholar

  • [23] Mellor H.Y., Glenn A.R., Dilworth M.J., Symbiotic and competitive properties of motility mutants of Rhizobium trifolii TA1, Arch. Microbiol., 1987, 148, 34–39 http://dx.doi.org/10.1007/BF00429644Google Scholar

  • [24] Kiers E.T., Rousseau R.A., Denison R.F., Measured sanctions: legume hosts detect quantitative variation in rhizobium cooperation and punish accordingly, Evol. Ecol. Res., 2006, 8, 1077–1086 Google Scholar

  • [25] Depret G., Laguerre G., Plant phenology and genetic variability in root and nodule development strongly influence genetic structuring of Rhizobium leguminosarum biovar viciae populations nodulating pea, New Phytol., 2008, 179, 224–235 http://dx.doi.org/10.1111/j.1469-8137.2008.02430.xCrossrefGoogle Scholar

  • [26] Rangin C., Brunel B., Cleyet-Marel J.C., Perrineau M.M., Bena G., Effect of Medicago truncatula genetic diversity, rhizobial competition and strain effectiveness on the diversity of a natural Sinorhizobium species community, Appl. Environ. Microbiol., 2008, 74, 5653–5661 http://dx.doi.org/10.1128/AEM.01107-08CrossrefGoogle Scholar

  • [27] Lopez-Garcia S.L., Vazquez T.E.E., Favelukes G., Lodeiro L.A., Rhizobial position as a main determinant in the problem of competition for nodulation in soybean, Environ. Microbiol., 2002, 4, 216–224 http://dx.doi.org/10.1046/j.1462-2920.2002.00287.xCrossrefGoogle Scholar

  • [28] Gonzalez J.E., Keshavan N.D., Messing with bacterial quorum sensing, Microbiol. Mol. Biol. Rev., 2006, 70, 859–875 http://dx.doi.org/10.1128/MMBR.00002-06CrossrefGoogle Scholar

  • [29] Teplitski M., Mathesius U., Rumbaugh K.P., Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells, Chem. Rev., 2011, 111, 100–116 http://dx.doi.org/10.1021/cr100045mCrossrefGoogle Scholar

  • [30] Wielbo J., Marek-Kozaczuk M., Mazur A., Kubik-Komar A., Skorupska A., Genetic and metabolic divergence within a Rhizobium leguminosarum bv. trifolii population recovered from clover nodules, Appl. Environ. Microbiol., 2010, 76, 4593–4600 http://dx.doi.org/10.1128/AEM.00667-10CrossrefGoogle Scholar

  • [31] Duodu S., Brophy C., Connolly J., Svenning M.M., Competitiveness of native Rhizobium leguminosarum bv. trifolii strain for nodule occupancy is manifested during infection, Plant Soil, 2009, 318, 117–126 http://dx.doi.org/10.1007/s11104-008-9822-yCrossrefGoogle Scholar

  • [32] Wielbo J., Golus J., Marek-Kozaczuk M., Skorupska A., Symbiosis stage-associated alterations in quorum sensing autoinducer molecules biosynthesis in Sinorhizobium meliloti, Plant Soil, 2010, 329, 399–410 http://dx.doi.org/10.1007/s11104-009-0166-zCrossrefGoogle Scholar

  • [33] Wielbo J., Kuske J., Marek-Kozaczuk M., Skorupska A., The competition between Rhizobium leguminosarum bv. viciae strains progresses until late stages of symbiosis, Plant Soil, 2010, 337, 125–135 http://dx.doi.org/10.1007/s11104-010-0510-3CrossrefGoogle Scholar

  • [34] Jensen E.S., Sorensen L.H., Survival of Rhizobium leguminosarum is soil after addition as inoculant, FEMS Microbiol. Ecol., 1987, 45, 221–226 http://dx.doi.org/10.1111/j.1574-6968.1987.tb02359.xCrossrefGoogle Scholar

  • [35] Svenning M.M., Gudmundsson J., Fagerli I.L., Leinonen P., Competition for nodule occupancy between introduced strains of Rhizobium leguminosarum bv. trifolii and its influence on plant production, Annals Botany, 2001, 88, 781–787 http://dx.doi.org/10.1006/anbo.2001.1484CrossrefGoogle Scholar

  • [36] Wielbo J., Marek-Kozaczuk M., Mazur A., Kubik-Komar A., Skorupska A., The Structure and metabolic diversity of population of pea microsymbionts isolated from root nodules, British Microbiology Research Journal, 2011, 1, 55–69 Google Scholar

  • [37] Sambrook J., Fritsch E.F., Maniatis T., Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 1989 Google Scholar

  • [38] Caetano-Anolles G., Crist-Estes D. K., Bauer W. D., Chemotaxis of Rhzobium meliloti to the plant flavone luteolin requires functional nodulation genes, J. Bacteriol., 1998, 7, 3164–3169 Google Scholar

  • [39] Adler J., A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli, J. Gen. Microbiol., 1973, 74, 77–91 Google Scholar

  • [40] Palleroni N. J., Chamber for bacterial chemotaxis experiments, Appl. Environ. Microbiol., 1976, 32, 729–730 Google Scholar

  • [41] Miller J., Experiments in molecular genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, 1972 Google Scholar

  • [42] Cha C., Gao P., Chen Y.C., Shaw P.D., Farrand S.K., Production of acyl-homoserine lactone quorum-sensing signals by Gram-negative plantassociated bacteria, Mol. Plant-Microbe Interact., 1998, 11, 1119–1129 http://dx.doi.org/10.1094/MPMI.1998.11.11.1119CrossrefGoogle Scholar

  • [43] Lithgow J.K., Danino V.E., Jones J., Downie J.A., Analysis of N-acyl homoserine-lactone quorumsensing molecules made by different strains and biovars of Rhizobium leguminosarum containing different symbiotic plasmids, Plant Soil, 2001, 232, 3–12 http://dx.doi.org/10.1023/A:1010333716277CrossrefGoogle Scholar

  • [44] Vincent J.M., A manual for the practical study of root nodule bacteria, International biological program handbook no.15, Blackwell Scientific Publications Ltd, Oxford, 1970 Google Scholar

  • [45] Gaworzewska E.T., Carlile M.J., Positive chemotaxis of Rhizobium leguminosarum and other bacteria towards root exudates from legumes and other plants, J. Gen. Microbiol., 1982, 128, 1179–1188 Google Scholar

  • [46] Knee E.M., Gong F.C., Gao M., Teplitski M., Jones A.M., Foxworthy A., et al., Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source, Mol. Plant-Microbe Interact., 2001, 14, 775–784 http://dx.doi.org/10.1094/MPMI.2001.14.6.775CrossrefGoogle Scholar

  • [47] Bertin C., Yang X., Weston L.A., The role of root exudates and allelochemicals in the rhizosphere, Plant Soil, 2003, 256, 67–83 http://dx.doi.org/10.1023/A:1026290508166CrossrefGoogle Scholar

  • [48] Lodwig E., Poole P., Metabolism of Rhizobium bacteroids, CRC Crit. Rev. Plant Sci., 2003, 22, 37–78 http://dx.doi.org/10.1080/713610850CrossrefGoogle Scholar

  • [49] Zhang F., Smith D.L., Preincubation of Bradyrhizobium japonicum with genistein accelerates nodule development of soybean at suboptimal root zone temperatures, Plant Physiol., 1995, 108, 961–968 http://dx.doi.org/10.1104/pp.108.1.429CrossrefGoogle Scholar

  • [50] Zhang F., Smith D.L., Inoculation of soybean (Glycine max (L.) Merr.) with genistein-preincubated Bradyrhizobium japonicum or genistein directly applied into soil increases soybean protein and dry matter yield under short season conditions, Plant Soil, 1996, 179, 233–241 http://dx.doi.org/10.1007/BF00009333CrossrefGoogle Scholar

  • [51] Zhang F., Smith D.L., Interorganismal signaling in suboptimum environments: the legume-rhizobia symbiosis. Adv. Agron., 2002, 76, 125–61 http://dx.doi.org/10.1016/S0065-2113(02)76004-5CrossrefGoogle Scholar

  • [52] Maj D., Wielbo J., Marek-Kozaczuk M., Skorupska A., Pretreatment of clover seeds with Nod factors improves growth and nodulation of Trifolium pretense, J. Chem. Ecol., 2009, 35, 479–487 http://dx.doi.org/10.1007/s10886-009-9620-xCrossrefGoogle Scholar

  • [53] Gurich N., Gonzalez J.E., Role of quorum sensing in Sinorhizobium meliloti-alfalfa symbiosis, J. Bacteriol., 2009, 191, 4372–4382 http://dx.doi.org/10.1128/JB.00376-09CrossrefGoogle Scholar

  • [54] Mathesius U., Mulders S., Gao M., Teplitski M., Caetano-Anolles G., Rolfe B.G., et al., Extensive and specific responses of an eukaryote to bacterial quorum-sensing signals, Proc. Natl. Acad. Sci. USA, 2003, 100, 1444–1449 http://dx.doi.org/10.1073/pnas.262672599CrossrefGoogle Scholar

  • [55] Keshavan N.D., Chowdhary P.K., Haines D.C., Gonzalez J.E., L-canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti, J. Bacteriol., 2005, 187, 8427–8436 http://dx.doi.org/10.1128/JB.187.24.8427-8436.2005CrossrefGoogle Scholar

  • [56] Dong Y.H., Xu J.L., Li X.Z., Zhang L.H., Aii, an enzyme that inactivates the acylhomoserine lactone quorum sensing signal and attenuates the virulence of Erwinia carotovora, Proc. Natl. Acad. Sci. USA, 2000, 97, 2531–2536 Google Scholar

  • [57] Mavridou A., Barny A.M., Poole P., Plaskitt K., Davies A.E., Johnston A.W.B., et al., Rhizobium leguminosarum nodulation gene (nod) expression is lowered by an allele-specific mutation in the dicarboxylate transport gene dctB, Microbiol., 1995, 141, 103–111 http://dx.doi.org/10.1099/00221287-141-1-103CrossrefGoogle Scholar

  • [58] Fujishige N.A., Lum M.R., De Hoff P.L., Whitelegge J.P., Faull K.F., Hirsch A.M., Rhizobium common nod genes are required for biofilm formation, Mol. Microbiol., 2008, 67, 504–515 http://dx.doi.org/10.1111/j.1365-2958.2007.06064.xCrossrefGoogle Scholar

About the article

Published Online: 2011-12-25

Published in Print: 2012-02-01

Citation Information: Open Life Sciences, Volume 7, Issue 1, Pages 13–24, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-011-0085-x.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Elizabeth M. Vanderlinde, Michael F. Hynes, and Christopher K. Yost
Environmental Microbiology, 2014, Volume 16, Number 1, Page 205

Comments (0)

Please log in or register to comment.
Log in