Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 7, Issue 1

Issues

Volume 10 (2015)

Intranasal insulin affects adenyl cyclase system in rat tissues in neonatal diabetes

Alexander Shpakov
  • Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oksana Chistyakova
  • Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kira Derkach
  • Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Irina Moyseyuk
  • Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vera Bondareva
  • Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-12-25 | DOI: https://doi.org/10.2478/s11535-011-0089-6

Abstract

The changes in hormone-regulated adenylyl cyclase (AC) signaling system implicated in control of the nervous, cardiovascular and reproductive systems may contribute to complications of diabetes mellitus (DM). We investigated the functional state of AC system in the brain, myocardium, ovary and uterus of rats with neonatal DM and examined the influence of intranasally administered insulin on the sensitivity of this system to biogenic amines and polypeptide hormones. The regulatory effects of somatostatin and 5-HT1BR-agonist 5-nonyloxytryptamine acting via Gi protein-coupled receptors were significantly decreased in DM and partially restored in insulin-treated rats. The effects of hormones, activators of AC, are changed in tissue- and receptorspecific manner, and intranasal insulin restored the effects rather close to the level in control. In insulin-treated non-diabetic rats, AC stimulating effects of isoproterenol and relaxin in the myocardium and of human chorionic gonadotropin in the ovaries were decreased, while the effects of hormones, inhibitors of AC, were increased. These data indicate that with intranasal insulin, Gi protein-mediated signaling pathways continue to gain strength. The obtained data on the influence of hormones on AC system in the brain, myocardium, ovary and uterus allow looking anew into the mechanisms of therapeutic effects of intranasal insulin.

Keywords: Adenylyl cyclase signaling system; Brain; Diabetes mellitus; Gonadotropin; Insulin; Myocardium; Ovary; Somatostatin; Uterus

  • [1] Chitaley K., Type 1 and Type 2 diabetic-erectile dysfunction: same diagnosis (ICD-9), different disease?, J. Sex. Med., 2009, 6(Suppl.3), 262–268 http://dx.doi.org/10.1111/j.1743-6109.2008.01183.xCrossrefGoogle Scholar

  • [2] Stiles M.C., Seaquist E.R., Cerebral structural and functional changes in type 1 diabetes, Minerva Med., 2010, 101, 105–114 Google Scholar

  • [3] Tabit C.E., Chung W.B., Hamburg N.M., Vita J.A., Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications, Rev. Endocr. Metab. Disord., 2010, 11, 61–74 http://dx.doi.org/10.1007/s11154-010-9134-4CrossrefGoogle Scholar

  • [4] Hashim S., Li Y., Anand-Srivastava M.B., G proteinlinked cell signaling and cardiovascular functions in diabetes/hyperglycemia, Cell Biochem. Biophys., 2006, 44, 51–64 http://dx.doi.org/10.1385/CBB:44:1:051CrossrefGoogle Scholar

  • [5] Muniyappa R., Montagnani M., Koh K.K., Quon M.J., Cardiovascular actions of insulin, Endocr. Rev., 2007, 28, 463–491 http://dx.doi.org/10.1210/er.2007-0006CrossrefGoogle Scholar

  • [6] Shpakov A.O., Kuznetsova L.A., Plesneva S.A., Gur’ianov I.A., Pertseva M.N., [Molecular causes of changes in sensitivity of adenylyl cyclase signaling system to biogenic amines in the heart muscle during experimental streptozotocin diabetes], Tsitologiia, 2005, 47, 540–548, (in Russian) Google Scholar

  • [7] Shpakov A.O., Kuznetsova L.A., Plesneva S.A., Pertseva M.N., [The disturbance of the transduction of adenylyl cyclase inhibiting hormonal signal in myocardium and brain of rats with experimental type II diabetes], Tsitologiia, 2007, 49, 442–450, (in Russian) Google Scholar

  • [8] Shpakov A.O., Derkach K.V., Bondareva V.M., [A decrease in the sensitivity of adenylyl cyclase and heterotrimeric G proteins to chorionic gonadotrophin and peptide hormones action in the tissues of reproductive system of rats with experimental type 2 diabetes], Biomed. Khim., 2010, 4, 258–263, (in Russian) Google Scholar

  • [9] Palmer T.M., Houslay M.D., Determination of G-protein levels, ADP-ribosylation by cholera and pertussis toxins and the regulation of adenylyl cyclase activity in liver plasma membranes from lean and genetically diabetic (db/db) mice, Biochim. Biophys. Acta, 1991, 1097, 193–204 Google Scholar

  • [10] Weber L.P., Macleod K.M., Influence of streptozotocin diabetes on the Alpha-1 adrenoceptor and associated G proteins in rat arteries, J. Pharmacol. Exp. Ther., 1997, 283, 1469–1478 Google Scholar

  • [11] Shpakov A.O., Bondareva V.M., Chistiakova O.V., [Functional state of adenylyl cyclase signaling system in reproductive tissues of rats with experimental type 1 diabetes], Tsitologiia, 2010, 52, 177–183, (in Russian) Google Scholar

  • [12] Shpakov A.O., Kuznetsova L.A., Plesneva S.A., Kolychev A.P., Bondareva V.M., Chistyakova O.V., et al., Functional defects in adenylyl cyclase signaling mechanisms of insulin and relaxin action in skeletal muscles of rat with streptozotocin type 1 diabetes, Cent. Eur. J. Biol., 2006, 1, 530–544 http://dx.doi.org/10.2478/s11535-006-0035-1CrossrefGoogle Scholar

  • [13] Ovalle F., Clinical approach to the patient with diabetes mellitus and very high insulin requirements, Diabetes Res. Clin. Pract., 2010, 90, 231–242 http://dx.doi.org/10.1016/j.diabres.2010.06.025CrossrefGoogle Scholar

  • [14] Mann D.M., Woodward M., Ye F., Krousel-Wood M., Muntner P., Trends in medication use among US adults with diabetes mellitus: glycemic control at the expense of controlling cardiovascular risk factors, Arch. Intern. Med., 2009, 169, 1718–1720 http://dx.doi.org/10.1001/archinternmed.2009.296CrossrefGoogle Scholar

  • [15] Benedict C., Hallschmid M., Hatke A., Schultes B., Fehm H.L., Born J., et al., Intranasal insulin improves memory in humans, Psychoneuroendocrinology, 2004, 29, 1326–1334 http://dx.doi.org/10.1016/j.psyneuen.2004.04.003CrossrefGoogle Scholar

  • [16] Stockhorst U., de Fries D., Steingrueber H.J., Scherbaum W.A., Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans, Physiol. Behav., 2004, 83, 47–54 CrossrefGoogle Scholar

  • [17] Hemmings S.J., Spafford D., Neonatal STZ model of type II diabetes mellitus in the Fischer 344 rat: characteristics and assessment of the status of the hepatic adrenergic receptors, Int. J. Biochem. Cell Biol., 2000, 32, 905–919 http://dx.doi.org/10.1016/S1357-2725(00)00019-4CrossrefGoogle Scholar

  • [18] Blondel O., Bailbé D., Portha B., Relation of insulin deficiency to impaired insulin action in NIDDM adult rats given streptozocin as neonates, Diabetes, 1989, 38, 610–617 http://dx.doi.org/10.2337/diabetes.38.5.610CrossrefGoogle Scholar

  • [19] Thorne R.G., Pronk G.J., Padmanabhan V., Frey W.H. 2nd, Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration, Neuroscience, 2004, 127, 481–496 http://dx.doi.org/10.1016/j.neuroscience.2004.05.029CrossrefGoogle Scholar

  • [20] Baker S.P., Potter L.T., A minor component of the binding of [3H]guanyl-5′-yl imidodiphosphate to cardiac membranes associated with the activation of adenylyl cyclase, J. Biol. Chem., 1981, 256, 7925–7931 Google Scholar

  • [21] Shpakov A.O., Shpakova E.A., Tarasenko I.I., Derkach K.V., Vlasov G.P., The peptides mimicking the third intracellular loop of 5-hydroxytryptamine receptors of the types 1B and 6 selectively activate G proteins and receptor-specifically inhibit serotonin signaling via the adenylyl cyclase system, Int. J. Pept. Res. Ther., 2010, 16, 95–105 http://dx.doi.org/10.1007/s10989-010-9208-xCrossrefGoogle Scholar

  • [22] Salomon Y., Londos C., Rodbell M.A., Highly sensitive adenylate cyclase assay, Anal. Biochem., 1974, 58, 541–548 http://dx.doi.org/10.1016/0003-2697(74)90222-XCrossrefGoogle Scholar

  • [23] McIntire W.E., MacCleery G., Garrison J.C., The G protein b subunit is a determinant in the coupling of Gs to the b1-adrenergic and A2a adenosine receptors, J. Biol. Chem., 2001, 276, 15801–15809 http://dx.doi.org/10.1074/jbc.M011233200CrossrefGoogle Scholar

  • [24] Shpakov A.O., Kuznetsova L.A., Plesneva S.A., Bondareva V.M., Pertseva M.N., Functional coupling of hormone receptors with G proteins in the adenylate cyclase system of the rat muscle tissues and brain under conditions of short-term hyperglycemia, Bull. Exp. Biol. Med., 2007, 144, 684–688 http://dx.doi.org/10.1007/s10517-007-0405-3CrossrefGoogle Scholar

  • [25] Li Y., Descorbeth M., Anand-Srivastava M.B., Role of oxidative stress in high glucose-induced decreased expression of Giα proteins and adenylyl cyclase signaling in vascular smooth muscle cells, Am. J. Physiol. Heart Circ. Physiol., 2008, 294, 2845–2854 http://dx.doi.org/10.1152/ajpheart.91422.2007CrossrefGoogle Scholar

  • [26] Bushfield M., Griffiths S.L., Murphy G.J., Pyne N.J., Knowler J.T., Milligan G., et al., Diabetes-induced alterations in the expression, functioning and phosphorylation state of the inhibitory guanine nucleotide regulatory protein Gi-2 in hepatocytes, Biochem. J., 1990, 271, 365–372 Google Scholar

  • [27] Livingstone C., McLellan A.R., McGregor M.A., Wilson A., Connell J.M., Small M., et al., Altered G-protein expression and adenylate cyclase activity in platelets of non-insulin-dependent diabetic (NIDDM) male subjects, Biochim. Biophys. Acta., 1991, 1096, 127–133 Google Scholar

  • [28] Caro J.F., Raju M.S., Caro M., Lynch C.J., Poulos J., Exton J.H., et al., Guanine nucleotide binding regulatory proteins in liver from obese humans with and without type II diabetes: evidence for altered “cross-talk” between the insulin receptor and Giproteins, J. Cell. Biochem., 1994, 54, 309–319 http://dx.doi.org/10.1002/jcb.240540307CrossrefGoogle Scholar

  • [29] Gettys T.W., Ramkumar V., Surwit R.S., Taylor I.L., Tissue-specific alterations in G protein expression in genetic versus diet-induced models of non-insulin-dependent diabetes mellitus in the mouse, Metab. Clin. Exp., 1995, 44, 771–778 http://dx.doi.org/10.1016/0026-0495(95)90191-4CrossrefGoogle Scholar

  • [30] Hattori Y., Matsuda N., Sato A., Watanuki S., Tomioka H., Kawasaki H., et al., Predominant contribution of the G protein-mediated mechanism to NaF-induced vascular contractions in diabetic rats: association with an increased level of Gqα expression, J. Pharmacol. Exp. Ther., 2000, 292, 761–768 Google Scholar

  • [31] Rodgers B.D., Bernier M., Levine M.A., Endocrine regulation of G-protein subunit production in an animal model of type 2 diabetes mellitus, J. Endocrinol., 2001, 168, 509–515 http://dx.doi.org/10.1677/joe.0.1680509CrossrefGoogle Scholar

  • [32] Hashim S., Li Y., Nagakura A., Takeo S., Anand-Srivastava M.B., Modulation of G-protein expression and adenylyl cyclase signaling by high glucose in vascular smooth muscle, Cardiovasc. Res., 2004, 63, 709–718 http://dx.doi.org/10.1016/j.cardiores.2004.04.021CrossrefGoogle Scholar

  • [33] Griffiths S.L., Knowler J.T., Houslay M.D., Diabetes-induced changes in guanine-nucleotide-regulatory-protein mRNA detected using synthetic oligonucleotide probes, Eur. J. Biochem., 1990, 193, 367–374 http://dx.doi.org/10.1111/j.1432-1033.1990.tb19348.xCrossrefGoogle Scholar

  • [34] Lin S.L., Setya S., Johnson-Farley N.N., Cowen D.S., Differential coupling of 5-HT1 receptors to G proteins of the Gi family, Br. J. Pharmacol., 2002, 136, 1072–1078 http://dx.doi.org/10.1038/sj.bjp.0704809CrossrefGoogle Scholar

  • [35] Moller L.N., Stidsen C.E., Hartmann B., Holst J.J., Somatostatin receptors, Biochim. Biophys. Acta, 2003, 1616, 1–84 http://dx.doi.org/10.1016/S0005-2736(03)00235-9CrossrefGoogle Scholar

  • [36] Robinson R., Krishnakumar A., Paulose C.S., Enhanced dopamine D1 and D2 receptor gene expression in the hippocampus of hypoglycaemic and diabetic rats, Cell. Mol. Neurobiol., 2009, 29, 365–372 http://dx.doi.org/10.1007/s10571-008-9328-4CrossrefGoogle Scholar

  • [37] Kumar T.P., Antony S., Gireesh G., George N., Paulose C.S., Curcumin modulates dopaminergic receptor, CREB and phospholipase C gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats, J. Biomed. Sci., 2010, http://www.jbiomedsci.com/content/17/1/43 Google Scholar

  • [38] Hashim S., Liu Y.Y., Wang R., Anand-Srivastava M.B., Streptozotocin-induced diabetes impairs G-protein linked signal transduction in vascular smooth muscle, Mol. Cell. Biochem., 2002, 240, 57–65 http://dx.doi.org/10.1023/A:1020652526803CrossrefGoogle Scholar

  • [39] Bégin-Heick N., Liver beta-adrenergic receptors, G proteins, and adenylyl cyclase activity in obesity-diabetes syndromes, Am. J. Physiol., 1994, 266, 1664–1672 Google Scholar

  • [40] Uekita K., Tobise K., Onodera S., Enhancement of the cardiac β-adrenergic system at an early diabetic state in spontaneously diabetic Chinese hamsters, Jpn. Circ. J., 1997, 61, 64–73 http://dx.doi.org/10.1253/jcj.61.64CrossrefGoogle Scholar

  • [41] Dinçer U.D., Bidasee K.R., Güner S., Tay A., Ozçelikay A.T., Altan V.M., The effect of diabetes on expression of β1-, β2-, and β3-adrenoreceptors in rat hearts, Diabetes, 2001, 50, 455–461 http://dx.doi.org/10.2337/diabetes.50.2.455Google Scholar

  • [42] Bidasee K.R., Zheng H., Shao C.H., Parbhu S.K., Rozanski G.J., Patel K.P., Exercise training initiated after the onset of diabetes preserves myocardial function: effects on expression of β-adrenoceptors, J. Appl. Physiol., 2008, 105, 907–914 http://dx.doi.org/10.1152/japplphysiol.00103.2008CrossrefGoogle Scholar

  • [43] Lahaye S.D., Gratas-Delamarche A., Malardé L., Vincent S., Zguira M.S., Morel S.L., et al., Intense exercise training induces adaptation in expression and responsiveness of cardiac β-adrenoceptors in diabetic rats, Cardiovasc. Diabetol., 2010, http://www.cardiab.com/content/9/1/72 Google Scholar

  • [44] Atkins F.L., Dowell R.T., Love S., Beta-Adrenergic receptors, adenylate cyclase activity, and cardiac dysfunction in the diabetic rat, J. Cardiovasc. Pharmacol., 1985, 7, 66–70 http://dx.doi.org/10.1097/00005344-198501000-00011CrossrefGoogle Scholar

  • [45] Bilginoglu A., Cicek F.A., Ugur M., Gurdal H., Turan B., The role of gender differences in betaadrenergic receptor responsiveness of diabetic rat heart, Mol. Cell. Biochem., 2007, 305, 63–69 http://dx.doi.org/10.1007/s11010-007-9528-0CrossrefGoogle Scholar

  • [46] Gando S., Hattori Y., Akaishi Y., Nishihira J., Kanno M., Impaired contractile response to beta adrenoceptor stimulation in diabetic rat hearts: alterations in β adrenoceptors-G proteinadenylate cyclase system and phospholamban phosphorylation, J. Pharmacol. Exp. Ther., 1997, 282, 475–484 Google Scholar

  • [47] Stanley W.C., Dore J.J., Hall J.L., Hamilton C.D., Pizzurro R.D., Roth D.A., Diabetes reduces right atrial β-adrenergic signaling but not agonist stimulation of heart rate in swine, Can. J. Physiol. Pharmacol., 2001, 79, 346–351 http://dx.doi.org/10.1139/y00-133CrossrefGoogle Scholar

  • [48] Daniels A., van Bilsen M., Janssen B.J., Brouns A.E., Cleutjens J.P., Roemen T.H., et al., Impaired cardiac functional reserve in type 2 diabetic db/db mice is associated with metabolic, but not structural, remodeling, Acta Physiol. (Oxf), 2010, 200, 11–22 Google Scholar

  • [49] Tanaka Y., Kashiwagi A., Saeki Y., Shigeta Y., Abnormalities in cardiac α1-adrenoceptor and its signal transduction in streptozocin-induced diabetic rats, Am. J. Physiol., 1992, 263, 425–429 Google Scholar

  • [50] Barber M., Kasturi B.S., Austin M.E., Patel K.P., MohanKumar S.M., MohanKumar P.S., Diabetesinduced neuroendocrine changes in rats: role of brain monoamines, insulin and leptin, Brain Res., 2003, 964, 128–135 http://dx.doi.org/10.1016/S0006-8993(02)04091-XCrossrefGoogle Scholar

  • [51] Hutchinson D.S., Summers R.J., Bengtsson T., Regulation of AMP-activated protein kinase activity by G-protein coupled receptors: potential utility in treatment of diabetes and heart disease, Pharmacol. Ther., 2008, 119, 291–310 http://dx.doi.org/10.1016/j.pharmthera.2008.05.008CrossrefGoogle Scholar

  • [52] Henkin R.I., Inhaled insulin-intrapulmonary, intranasal, and other routes of administration: mechanisms of action, Nutrition, 2010, 26, 33–39 http://dx.doi.org/10.1016/j.nut.2009.08.001CrossrefGoogle Scholar

  • [53] Gerozissis K., Brain insulin: regulation, mechanisms of action and functions, Cell. Mol. Neurobiol., 2003, 23, 1–25 http://dx.doi.org/10.1023/A:1022598900246CrossrefGoogle Scholar

  • [54] Laron Z., Insulin and the brain, Arch. Physiol. Biochem., 2009, 115, 112–116 http://dx.doi.org/10.1080/13813450902949012CrossrefGoogle Scholar

  • [55] Brüning J.C., Gautam D., Burks D.J., Gillette J., Schubert M., Orban P.C., et al., Role of brain insulin receptor in control of body weight and reproduction, Science, 2000, 289, 2122–2125 http://dx.doi.org/10.1126/science.289.5487.2122CrossrefGoogle Scholar

  • [56] Hallschmid M., Benedict C., Born J., Fehm H.L., Kern W., Manipulating central nervous mechanisms of food intake and body weight regulation by intranasal administration of neuropeptides in man, Physiol. Behav., 2004, 83, 55–64 CrossrefGoogle Scholar

  • [57] Biessels G.J., Deary I.J., Ryan C.M., Cognition and diabetes: a lifespan perspective, Lancet Neurol., 2008, 7, 184–190 http://dx.doi.org/10.1016/S1474-4422(08)70021-8CrossrefGoogle Scholar

  • [58] Vig P.J., Subramony S.H., D’souza D.R., Wei J., Lopez M.E., Intranasal administration of IGF-I improves behavior and Purkinje cell pathology in SCA1 mice, Brain Res. Bull., 2006, 69, 573–579 http://dx.doi.org/10.1016/j.brainresbull.2006.02.020Google Scholar

  • [59] Benedict C., Hallschmid M., Schmitz K., Schultes B., Ratter F., Fehm H.L., et al., Intranasal insulin improves memory in humans: superiority of insulin aspart, Neuropsychopharmacology, 2007, 32, 239–243 http://dx.doi.org/10.1038/sj.npp.1301193CrossrefGoogle Scholar

About the article

Published Online: 2011-12-25

Published in Print: 2012-02-01


Citation Information: Open Life Sciences, Volume 7, Issue 1, Pages 33–47, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-011-0089-6.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
K. V. Derkach, A. O. Ivantsov, O. V. Chistyakova, I. B. Sukhov, D. M. Buzanakov, A. A. Kulikova, and A. O. Shpakov
Bulletin of Experimental Biology and Medicine, 2017, Volume 163, Number 2, Page 184
[2]
Alexander O Shpakov, Kira V Derkach, and Lev M Berstein
Future Science OA, 2015, Volume 1, Number 3
[3]
A. O. Shpakov, K. V. Derkach, O. A. Zharova, E. A. Shpakova, and V. M. Bondareva
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2015, Volume 9, Number 2, Page 124
[4]
Kira V. Derkach, Vera M. Bondareva, Oxana V. Chistyakova, Lev M. Berstein, and Alexander O. Shpakov
International Journal of Endocrinology, 2015, Volume 2015, Page 1
[6]
A. O. Shpakov
Journal of Evolutionary Biochemistry and Physiology, 2014, Volume 50, Number 6, Page 552
[7]
A. O. Shpakov, K. V. Derkach, O. V. Chistyakova, and V. M. Bondareva
Doklady Biochemistry and Biophysics, 2014, Volume 459, Number 1, Page 186
[8]
L. A. Kuznetsova, S. A. Plesneva, T. S. Sharova, M. N. Pertseva, and A. O. Shpakov
Journal of Evolutionary Biochemistry and Physiology, 2014, Volume 50, Number 5, Page 399
[9]
A. O. Shpakov, K. V. Derkach, D. V. Dar’in, and P. S. Lobanov
Cell and Tissue Biology, 2014, Volume 8, Number 5, Page 400
[10]
I. V. Moiseyuk, K. V. Derkach, and A. O. Shpakov
Journal of Evolutionary Biochemistry and Physiology, 2014, Volume 50, Number 4, Page 310
[11]
A. O. Shpakov, D. V. Dar’in, K. V. Derkach, and P. S. Lobanov
Doklady Biochemistry and Biophysics, 2014, Volume 456, Number 1, Page 104
[12]
A. O. Shpakov, K. V. Derkach, O. V. Chistyakova, I. V. Moyseyuk, and V. M. Bondareva
Cell and Tissue Biology, 2014, Volume 8, Number 1, Page 68
[13]
I. B. Sukhov, V. N. Shipilov, O. V. Chistyakova, A. M. Trost, and A. O. Shpakov
Doklady Biological Sciences, 2013, Volume 453, Number 1, Page 349
[14]
M. N. Pertseva, L. A. Kuznetsova, and A. O. Shpakov
Journal of Evolutionary Biochemistry and Physiology, 2013, Volume 49, Number 5, Page 457
[15]
Alexander O. Shpakov and Kira V. Derkach
Journal of Signal Transduction, 2013, Volume 2013, Page 1
[16]
K. V. Derkach, I. V. Moyseyuk, and A. O. Shpakov
Doklady Biochemistry and Biophysics, 2013, Volume 451, Number 1, Page 217
[17]
K. V. Derkach, I. V. Moyseyuk, O. V. Chistyakova, and A. O. Shpakov
Bulletin of Experimental Biology and Medicine, 2013, Volume 155, Number 3, Page 339
[18]
A. O. Shpakov and K. V. Derkach
Cell and Tissue Biology, 2013, Volume 7, Number 3, Page 212
[19]
A. O. Shpakov, K. V. Derkach, O. V. Chistyakova, I. V. Moiseyuk, I. B. Sukhov, and V. M. Bondareva
Journal of Evolutionary Biochemistry and Physiology, 2013, Volume 49, Number 2, Page 153
[20]
K. V. Derkach, A. O. Shpakov, I. V. Moyseuk, and O. V. Chistyakova
Doklady Biochemistry and Biophysics, 2013, Volume 448, Number 1, Page 43
[21]
Alexander O. Shpakov, Kira V. Derkach, Irina V. Moyseyuk, and Oksana V. Chistyakova
Dataset Papers in Pharmacology, 2013, Volume 2013, Page 1
[22]
A. O. Shpakov, K. V. Derkach, O. V. Chistyakova, I. V. Moyseyuk, and V. M. Bondareva
Doklady Biochemistry and Biophysics, 2012, Volume 446, Number 1, Page 217

Comments (0)

Please log in or register to comment.
Log in