Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year

IMPACT FACTOR 2017: 0.764
5-year IMPACT FACTOR: 0.787

CiteScore 2017: 0.88

SCImago Journal Rank (SJR) 2017: 0.271
Source Normalized Impact per Paper (SNIP) 2017: 0.545

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 7, Issue 1


Volume 10 (2015)

Abundance dynamics and functional role of predaceous Leptodora kindtii in the Curonian Lagoon

Jūratė Lesutienė / Anna Semenova
  • Atlantic Research Institute of Marine Fisheries and Oceanography (AtlantNIRO), 236022, Kaliningrad, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Evelina Grinienė / Zita Gasiūnaitė / Viktorija Savickytė
  • Ecology Department, Klaipėda University Faculty of Natural Sciences and Mathematics, LT92294, Klaipėda, Lithuania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olga Dmitrieva
  • Atlantic Research Institute of Marine Fisheries and Oceanography (AtlantNIRO), 236022, Kaliningrad, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-12-25 | DOI: https://doi.org/10.2478/s11535-011-0098-5


The abundance and distribution of predatory cladoceran Leptodora kindtii was investigated in the estuarine lagoon (Curonian Lagoon, SE Baltic Sea). Three hydrodynamically different parts of the lagoon were selected, representing transitory oligohaline, intermediate freshwater and stagnant freshwater sites. L. kindtii was least abundant at the oligohaline site, never occurring at salinities greater than 4 psu. At the two freshwater sites, the abundance of L. kindtii varied from a low of <0.1 up to 2.2 indv. L−1 during peak abundance. Two peaks of L. kindtii abundance were observed with timing differences between stations: at the stagnant site the population of L. kindtii peaked two weeks earlier relative to the more hydrodynamically active sites, likely due to a 2°C higher May temperature. The small body size of L. kindtii in the lagoon (seasonal mean 2.68±0.6 mm) shows high fish predation pressure and predicts small cladocerans, juvenile copepods and rotifers being in the preferred prey size range. The calculated L. kindtii daily consumption during the population peak was as high as 100% of the daily zooplankton production, which implies high potential of this predator to shape the grazing zooplankton community in the lagoon.

Keywords: Predatory cladoceran; Grazing zooplankton; Transitory ecosystem

  • [1] Lampert W., Sommer U., Limnoecology: the ecology of lakes and streams, Oxford University Press, New York, Oxford, 1997 Google Scholar

  • [2] Liljendahl-Nurminen A., Invertebrate predation and trophic cascades in a pelagic food web — the multiple roles of Chaoborusflavicans (Meigen) in a clay-turbid lake, PhD thesis, University of Helsinky, Helsinky, Finland, 2006 Google Scholar

  • [3] Mordukhai-Boltovskoi P.D., Rivier I.K., Predatory cladoceransPodonidae, Polyphemidae, Cercopagidae, and Leptodoridae of the world fauna, Keys to the fauna of the USSR, Nauka Press, Leningrad, Russia, 1987, (in Russian) Google Scholar

  • [4] Herzig A., Auer B., The feeding behaviour of Leptodora kindtii and its impact on the zooplankton community of Neusiedler See (Austria), Hydrobiologia, 1990, 198, 107–117 http://dx.doi.org/10.1007/BF00048627CrossrefGoogle Scholar

  • [5] Lunte C.C., Luecke C., Trophic interactions of Leptodora in Lake Mendota, Limnol. Oceanogr., 1990, 35, 1091–1100 http://dx.doi.org/10.4319/lo.1990.35.5.1091CrossrefGoogle Scholar

  • [6] Branstrator D.K., Lehman J.T., Invertebrate predation in Lake Michigan: regulation of Bosmina longirostris by Leptodora kindtii, Limnol. Oceanogr., 1991, 36, 483–495 http://dx.doi.org/10.4319/lo.1991.36.3.0483CrossrefGoogle Scholar

  • [7] Vijverberg J., Koelewijn H.P., Van Densen W.L.T., Effects of predation and food on the population dynamics of the raptorial cladoceran Leptodora kindtii, Limnol. Oceanogr., 2005, 50, 455–464 http://dx.doi.org/10.4319/lo.2005.50.2.0455CrossrefGoogle Scholar

  • [8] Palmer A., Stich H.B., Maier G., Distribution patterns and predation risk of the coexisting cladocerans Bythotrephes longimanus and Leptodora kindtii in a large lake — Lake Constance, Hydrobiologia, 2001, 442, 301–307 http://dx.doi.org/10.1023/A:1017530305884CrossrefGoogle Scholar

  • [9] Uusitalo L., Horppila J., Eloranta P., Liljendahl-Nurminen A., Malinen T., Salonen M., et al., Leptodora kindtii and flexible foraging behaviour of fish-factors behind the delayed biomass peak of cladocerans in Lake Hiidenvesi, Int. Rev. Hydrobiol., 2003, 88, 34–48 http://dx.doi.org/10.1002/iroh.200390003CrossrefGoogle Scholar

  • [10] Wojtal A., Frankiewicz P., Zalewski M., The role of the invertebrate Leptodora kindtii in the trophic cascade of a lowland reservoir, Hydrobiologia, 1999, 416, 215–223 http://dx.doi.org/10.1023/A:1003815520751CrossrefGoogle Scholar

  • [11] Wojtal A., Frankiewicz P., Wagner-Lotkowska I., Zalewski M., The evaluation of the role of pelagic invertebrate versus vertebrate predators on the seasonal dynamics of filtering Cladocera in a shallow, eutrophic reservoir, Hydrobiologia, 2004, 515, 123–135 http://dx.doi.org/10.1023/B:HYDR.0000027324.44452.9eCrossrefGoogle Scholar

  • [12] Wagner A., Benndorf J., Climate-driven warming during spring destabilises a Daphnia population: a mechanistic food web approach, Oecologia, 2007, 151, 351–364 http://dx.doi.org/10.1007/s00442-006-0554-5CrossrefGoogle Scholar

  • [13] Kipriyanova L.M., Yermolaeva N. I., Bezmaternykh D.M., Dvurechenskaya S.Ya., Mitrofanova E.Yu., Changes in the biota of Chany Lake along a salinity gradient, Hydrobiologia, 2007, 576, 83–93 http://dx.doi.org/10.1007/s10750-006-0295-9CrossrefGoogle Scholar

  • [14] Polunina J. J., Populations of two predatory cladocerans in the Vistula Lagoon — the native Leptodora kindtii and non-indigenous Cercopagis pengoi, Oceanol. Hydrobiol. St., 2005, 34, 246–260 Google Scholar

  • [15] Põllumäe A., Kotta J., Factors describing the distribution of the zooplankton community in the Gulf of Finland in the context of interactions between native and introduced predatory cladocerans, Oceanologia, 2007, 42, 277–290 Google Scholar

  • [16] Ferrarin C., Razinkovas A., Gulbinskas S., Umgiesser G., Bliūdžiutė, L., Hydraulic regimebased zonation scheme of the Curonian Lagoon, Hydrobiologia, 2008, 611, 133–146 http://dx.doi.org/10.1007/s10750-008-9454-5CrossrefGoogle Scholar

  • [17] Gasiūnaitė Z.R., Coupling of the limnetic and brackishwater plankton crustaceans in the Curonian Lagoon (Baltic Sea), Int. Rev. Hydrobiol., 2000, 85, 653–661 http://dx.doi.org/10.1002/1522-2632(200011)85:5/6<653::AID-IROH653>3.0.CO;2-WCrossrefGoogle Scholar

  • [18] Gasiūnaitė Z.R., Razinkovas A., Temporal and spatial patterns of the crustacean zooplankton dynamics in transitional lagoon ecosystem, Hydrobiologia, 2004, 514, 139–149 http://dx.doi.org/10.1023/B:hydr.0000018214.93205.32CrossrefGoogle Scholar

  • [19] Berezina N.A., Petryashev V.V., Razinkovas A., Lesutienė J., Alien malacostracan crustaceans in the Eastern Baltic Sea: pathways and consequences, In: Galil B.S., Clark P.F., Carlton J.T. (Eds.), In the Wrong Place — Alien Marine Crustaceans: Distribution, Biology and Impacts, Series: Invading Nature — Springer Series in Invasion Ecology, Vol. 6., Springer, Dordrecht, Heidelberg, London, New York, 2011 Google Scholar

  • [20] Sommer U., Gliwicz Z.M., Lampert W., Duncan A., The PEG — model of seasonal succession of planktonic events in freshwaters, Arch. Hydrobiol., 1986, 106, 433–471 Google Scholar

  • [21] Dailidiene I., Davuliene L., Salinity trend and variation in the Baltic Sea near the Lithuanian coast in the Curonian Lagoon in 1984–2005, J. Marine Syst., 2008, 74, 520–529 http://dx.doi.org/10.1016/j.jmarsys.2008.01.014Google Scholar

  • [22] Pilkaitytė R., Razinkovas A., Seasonal changes in phytoplankton composition and nutrient limitation in shallow Baltic lagoon, Boreal Environ. Res., 2007, 12, 551–559 Google Scholar

  • [23] Semenova A.S., Aleksandrov S.V., The zooplankton consumption of primary production and an assessment of the water body trophic state on the basis of its structural and functional characteristics, Inland Water Biol., 2009, 2, 348–354 CrossrefGoogle Scholar

  • [24] Zuur A.F., Ieno E.N., Smith G.M., Analysing ecological data, Springer, New York, USA, 2007 Google Scholar

  • [25] Manca M., Comoli P., Seasonal changes in size of the feeding basket of Leptodora kindtii (Focke) in Lago Maggiore as related to variations in prey size selection, Limnol. Oceanogr., 1995, 40, 834–838 http://dx.doi.org/10.4319/lo.1995.40.4.0834CrossrefGoogle Scholar

  • [26] Salazkin A.A., Ivanova M.B., Ogorodnikova V.A., Methodical Recommendations on Collection and Treatment of Materials during Hydrobiological Studies in Fresh Water Bodies: Zooplankton and its Production, State Research Institute of Lake and River Fisheries, Leningrad, Russia, 1984, (in Russian) Google Scholar

  • [27] Pichlová R., Brandl Z., Predatory impact of Leptodora kindtii on zooplankton community in the Slapy Reservoir, Hydrobiologia, 2003, 504, 177–184 http://dx.doi.org/10.1023/B:HYDR.0000008517.64246.fdCrossrefGoogle Scholar

  • [28] Alajärvi E., Horppila J., Diel variation in the vertical distribution of crustacean zooplankton and food selection by planktivorous fish in a shallow turbid lake, Int. Rev. Hydrobiol., 2004, 89, 238–249 http://dx.doi.org/10.1002/iroh.200310707CrossrefGoogle Scholar

  • [29] Horppila J., Eloranta P., Liljendahl-Nurminen A., Niemisto J., Pekcan-Hekim Z., Refuge availability and sequence of predators determine the seasonal succession of crustacean zooplankton in a clay-turbid lake, Aquat. Ecol., 2009, 43, 91–103 http://dx.doi.org/10.1007/s10452-007-9158-3CrossrefGoogle Scholar

  • [30] Herzig A., Leptodora kindtii: efficient predator and preferred prey item in Neusiedler See, Austria, Hydrobiologia, 1995, 307, 273–282 http://dx.doi.org/10.1007/BF00032021CrossrefGoogle Scholar

  • [31] Žiliukienė V., Žiliukas V., Ecological characteristics of the ichtyoplankton of the Curonian Lagoon, Act. Zool. Lituanica, 2000, 10, 32–55 Google Scholar

  • [32] Horppila J., Liljendahl-Nurminen A., Malinen T., Effects of clay turbidity and light on the predatorprey interaction between smelts and chaoborids, Can. J. Fish. Aquat. Sci., 2004, 61, 1862–1870 http://dx.doi.org/10.1139/f04-123CrossrefGoogle Scholar

  • [33] Liljendahl-Nurminen A., Horppila J., Uusitalo L., Niemistö J., Spatial variability in the abundance of pelagic invertebrate predators in relation to depth and turbidity, Aquat. Ecol., 2008, 42, 25–33 http://dx.doi.org/10.1007/s10452-006-9070-2CrossrefGoogle Scholar

  • [34] Branstrator D.K., Predicting diet composition from body length in the zooplankton predator Leptodora kindtii, Limnol. Oceanogr., 1998, 43, 530–535 http://dx.doi.org/10.4319/lo.1998.43.3.0530CrossrefGoogle Scholar

About the article

Published Online: 2011-12-25

Published in Print: 2012-02-01

Citation Information: Open Life Sciences, Volume 7, Issue 1, Pages 91–100, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-011-0098-5.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in