Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year

IMPACT FACTOR 2016 (Open Life Sciences): 0.448

CiteScore 2016: 1.02

SCImago Journal Rank (SJR) 2016: 0.329
Source Normalized Impact per Paper (SNIP) 2016: 0.621

Open Access
See all formats and pricing
More options …
Volume 7, Issue 1 (Feb 2012)


Molecular barcoding for central-eastern European Crioceris leaf-beetles (Coleoptera: Chrysomelidae)

Daniel Kubisz
  • Department of Collections, Institute of Systematics and Evolution of Animals, Polish Academy of Science, 31-049, Cracow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Łukasz Kajtoch
  • Department of Experimental Zoology, Institute of Systematics and Evolution of Animals, Polish Academy of Science, 31-016, Cracow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miłosz Mazur / Volodymyr Rizun
Published Online: 2011-12-25 | DOI: https://doi.org/10.2478/s11535-011-0099-4


Among Crioceris leaf-beetles, the two most widespread species (Crioceris asparagi and C. duodecimpunctata) are serious invasive plant pests, while another two (C. quatuordecimpunctata and C. quinquepunctata) are rare species restricted to steppe-like habitats in Eurasia. The aim of the research was to check the genetic distinctiveness of these four species and develop barcodes for their molecular identification using the mitochondrial Cytochrome Oxidase I (COI) gene and two nuclear markers: Elongation Factor 1-α (EF1-α) and Internal Transcribed Spacer 1 (ITS1). The identification of each species was possible and reliable with the use of COI and ITS1 markers. EF1-α was omitted in analyses due to its high level of heterozygosity (presence of multiple PCR products). C. duodecimpunctata and C. quatuordecimpunctata were shown to be sister taxa, but the similar genetic distances between all of the species indicate that these species originated almost simultaneously from a common ancestor. Identification of two separate clades in populations of C. quatuordecimpunctata suggested that the clades are isolated and can be considered as separate conservation units.

Keywords: Asparagus beetles; COI; EF1-α; ITS1; Species identification; Pest; Steppe; Phylogeny; Taxonomy; Conservation units

  • [1] Suzuki K., Comparative morphology and evolution of the hind wings of the family Chrysomelidae (Coleoptera). III. Subfamilies Megascelinae, Clytrinae and Cryptocephalinae, Kontyû, Tokyo, 1969 Google Scholar

  • [2] Schmitt M., The Criocerinae: Biology, Phylogeny and Evolution, In: Joliviet P, Petitpierre E., Hsiao T.H., (Eds.) Evolution of Chrysomelidae, Kluwer Academic Publishers, 1988 Google Scholar

  • [3] Schmitt M., On the phylogeny of the Criocerinae (Coleoptera: Chrysomelidae), Entomography, 1985, 3, 393–401 Google Scholar

  • [4] Lopatin I.K., Aleksandrovich O.R., Konstantinov A.S., Check List of Leaf-Beetle (Coleoptera, Chrysomelidae) of the Eastern Europe and Northern Asia, Mantis, Olsztyn, 2004 Google Scholar

  • [5] Schmitt M., Subfamily Criocerinae Latreille, 1804, [In:] Löbl I., Smetana A., (eds.) Catalogue of Palaearctic Coleoptera, Vol. 6 Chrysomeloidea. Apollo Books, Stenstrup, 2010 Google Scholar

  • [6] Clark S.M., LeDoux D.G., Seeno T.N., Riley E.G., Gilbert A.J., Sullivan J.M., Host plants of leaf beetles species occurring in the United States and Canada, Coleopterists Society Special Publication No. 2, Sacramento, California, United States, 2004 Google Scholar

  • [7] Fara H., The Floral genome project: Asparagus flowers, 2007, http://www.flmnh.ufl.edu/flowerpower/asparagus.html Google Scholar

  • [8] Ohioline, Asparagus production management and Marketing, 2007, http://ohioline.osu.edu/b826/b826_14.html Google Scholar

  • [9] Fitch A., The asparagus beetle. The Country Gentleman, 1862, 20, 81–82 Google Scholar

  • [10] USDA-APHIS-PPQ, United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine. List of intercepted plant pests, Fiscal year 1983, APHIS, 1984, 82–10 Google Scholar

  • [11] LeSage L., Dobesberger E.J., Majka C.G., Introduced leaf beetles of the Maritime Provinces, 6: the common asparagus beetle, Crioceris asparagi (Linnaeus), and the twelve-spotted asparagus beetle, Crioceris duodecimpunctata (Linnaeus) (Coleoptera: Chrysomelidae), Proc. Entomol. Soc. Washington, 2008, 110, 602–621 http://dx.doi.org/10.4289/07-075.1CrossrefGoogle Scholar

  • [12] Capinera J.L., Lilly J.H., Bionomics and biotic control of the asparagus beetle, Crioceris asparagi, in western Massachusetts, Environ. Entomol., 1975, 4, 93–96 CrossrefGoogle Scholar

  • [13] Reilly T., Spafford J.H., Batchelor K., The effectiveness of ant baiting to reduce predation of Crioceris sp. (Coleoptera: Chrysomelidae), a biological control agent for bridal creeper, Fourteenth Australian Weeds Conference, 2010 Google Scholar

  • [14] White R.E., Revision of the subfamily Criocerinae (Chrysomelidae) of North America, north of Mexico, United States Department of Agriculture Technical Bulletin, 1993, 1805, 1–158 Google Scholar

  • [15] Riley E.G., Clark S.M., Seeno T.N., Catalog of the leaf beetles of America north of Mexico (Coleoptera: Megalopodidae, Orsodacnidae and Chrysomelidae, excluding Bruchinae)., Coleopterists Society Special Publication no. 1, Sacramento, California, 2003 Google Scholar

  • [16] Ryder O.A., Species conservation and systematics: the dilemma of the subspecies, TREE, 1986, 1, 9–10 Google Scholar

  • [17] Moritz C., Defining “Evolutionarily Significant Units” for conservation, TREE, 1994, 9, 373–375 Google Scholar

  • [18] Marvaldi A.E., Duckett C.N., Kjer K.M., Gillespie J.J., Structural alignment of 18S and 28S rDNA sequences provides insights into phylogeny of Phytophaga (Coleoptera: Curculionoidea and Chrysomeloidea), Zool. Scr., 2009, 38, 63–77 http://dx.doi.org/10.1111/j.1463-6409.2008.00360.xCrossrefGoogle Scholar

  • [19] Kölsch G., Pedersen B.V., Molecular phylogeny of reed beetles (Col., Chrysomelidae, Donaciinae): The signature of ecological specialization and geographical isolation, Mol. Phylogenet. Evol., 2008, 48, 936–952 http://dx.doi.org/10.1016/j.ympev.2008.05.035CrossrefGoogle Scholar

  • [20] Gomez-Zurita J., Jolivet P., Vogler A.P., Molecular systematics of Eumolpinae and the relationships with Spilopyrinae (Coleoptera: Chrysomelidae), Mol. Phylogenet. Evol., 2005,. 34, 584–600 http://dx.doi.org/10.1016/j.ympev.2004.11.022CrossrefGoogle Scholar

  • [21] Stewart J.B, Beckenbach A.T., Phylogenetic and genomic analysis of the complete mitochondrial DNA sequence of the spotted asparagus beetle Crioceris duodecimpunctata, Mol. Phylogenet. Evol., 2003, 26, 513–526 http://dx.doi.org/10.1016/S1055-7903(02)00421-9CrossrefGoogle Scholar

  • [22] Petitpierre E., Segarra C., Juan C., Genome size and chromosomal evolution in leaf beetles (Coleoptera, Chrysomelidae), Hereditas, 1993, 119, 1–6 http://dx.doi.org/10.1111/j.1601-5223.1993.00001.xCrossrefGoogle Scholar

  • [23] Hebert P.D.N., Ratnasingham S., deWaard J.R., Barcoding animal life: cytochrome coxidase subunit 1 divergences among closely related species, Proc. R. Soc. B: Biol, Sci., 2003, 270, 96–99 http://dx.doi.org/10.1098/rsbl.2003.0025CrossrefGoogle Scholar

  • [24] Álvarez I., Wendel J.F., Ribosomal ITS sequences and plant phylogenetic inference, Mol. Phylogenet. Evol., 2003, 29, 417–434 http://dx.doi.org/10.1016/S1055-7903(03)00208-2CrossrefGoogle Scholar

  • [25] Moritz C., Cicero C., DNA barcoding: Promise and pitfalls, PLoS Biology, 2004, 2, 1529–1531 http://dx.doi.org/10.1371/journal.pbio.0020354CrossrefGoogle Scholar

  • [26] Hebert P.D.N., Gregory T.R., The promise of DNA barcoding for taxonomy, Syst. Biol. 2005, 54, 852–859 http://dx.doi.org/10.1080/10635150500354886CrossrefGoogle Scholar

  • [27] Taberlet P., Coissac E., Pompanon F., Gielly L., Miguel C., Valentini A., et al., Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding, Nuc. Acids Res. 2006, 35, e14 http://dx.doi.org/10.1093/nar/gkl938CrossrefGoogle Scholar

  • [28] Yao H., Song J., Liu Ch., Luo K., Han J., Li Y., Pang X., et al., Use of ITS2 region as the universal DNA barcode for plants and animals, PLoS One, 2010, 5, e13102 http://dx.doi.org/10.1371/journal.pone.0013102CrossrefGoogle Scholar

  • [29] Simon C., Frati F., Bechenbach A., Crespi B., Liu H., Flock P., Evolution, weighting, and phylogenetic utility of mitochondrial gene sequence and compilation of conserved polymerase chain reaction primers, Annu. Entomol. Soc. America, 1994, 87, 651–701 CrossrefGoogle Scholar

  • [30] Normark B.B., Jordal B.H., Farrell B.D., Origin of a haplodiploid beetle lineage, Proc. R. Soc. B: Biol, Sci., 1999, 266, 2253–2259 http://dx.doi.org/10.1098/rspb.1999.0916CrossrefGoogle Scholar

  • [31] Sanz Muñoz S., Analysis of nuclear markers in two species with highly divergent mtDNA lineages in Iceland: ITS in Crangonyx islandicus and EF alpha in Apatania zonella, University of Iceland Life and Environmental Sciences, 2010 Google Scholar

  • [32] White T.J., Bruns T., Lee S., Taylor J., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, In: Innis M.A., Gelfand D.H., Shinsky J.J., White T.J. (Eds),. PCR Protocols: A Guide to Methods and Applications, Academic Press, San Diego, 1990 Google Scholar

  • [33] Kajtoch Ł., Lachowska-Cierlik D., Mazur M., Genetic diversity of the xerothermic weevils Polydrusus inustus and Centricnemus leucogrammus (Coleoptera: Curculionidae) in central Europe, Eur. J. Entomol., 2009, 106, 325–334 CrossrefGoogle Scholar

  • [34] Kajtoch Ł., Conservation genetics of xerothermic beetles in Europe: the case of Centricnemus leucogrammus, J. Insect Conserv., 2011, 6, 787–797 http://dx.doi.org/10.1007/s10841-011-9377-8CrossrefGoogle Scholar

  • [35] Hall T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nuc. Acids Symp. Ser. (Lond.), 1999, 41, 95–98 Google Scholar

  • [36] Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G., The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nuc. Acids Res., 1997, 24, 4876–4882 http://dx.doi.org/10.1093/nar/25.24.4876CrossrefGoogle Scholar

  • [37] Swofford D.L., PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Sinauer Associates, Sunderland, MA, 2002 Google Scholar

  • [38] Nylander J.A.A., MrModeltest v2. Program distributed by the author, Evolutionary Biology Centre, Uppsala University, 2008 Google Scholar

  • [39] Huelsenbeck J.P., Ronquist F., MRBAYES: Bayesian inference of phylogeny, Bioinformatics, 2001, 17, 754–755 http://dx.doi.org/10.1093/bioinformatics/17.8.754CrossrefGoogle Scholar

  • [40] Hall B.G., Phylogenetic Trees Made Easy: A How-To Manual, 3rd Edition, Sinauer, Assoc. Sunderland, MA, 2007 Google Scholar

  • [41] Rambaut A., Drummond A.J., Tracer v1.4.1. Distributed by the Authors. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK., 2003–2009 Google Scholar

  • [42] Page R.D.M., TREEVIEW: An application to display phylogenetic trees on personal computers, Comp. Applic. Biosci., 1996, 12, 357–358 Google Scholar

  • [43] Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S., MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods, Mol. Biol. Evol., 2011, DOI:10.1093/molbev/msr121 CrossrefGoogle Scholar

  • [44] Wiemers M., Fiedler K., Does the DNA barcoding gap exist? — a case study in blue butterflies (Lepidoptera: Lycaenidae), Frontiers in Zoology, 2007, 7, 4–8 Google Scholar

  • [45] Librado, P., Rozas, J., DnaSP v5: A software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, 25, 1451–1452 http://dx.doi.org/10.1093/bioinformatics/btp187CrossrefGoogle Scholar

  • [46] Zimmer E.A., Martin S.L., Beverly S.M., Kan Y.W., Wilson A.C., Rapid duplication and loss of genes coding for the chains of hemoglobin, T. Proc. Nat. Acad. Sci. Online (U.S.), 1980, 77, 2158–2162 http://dx.doi.org/10.1073/pnas.77.4.2158CrossrefGoogle Scholar

  • [47] Nei M, Rooney AP., Concerted and birth- and heath evolution of multigene families, Annu. Rev. Genet., 2005, 39, 121–152 http://dx.doi.org/10.1146/annurev.genet.39.073003.112240CrossrefGoogle Scholar

  • [48] Kajtoch Ł., Korotyaev B., Lachowska-Cierlik D., Genetic distinctness of parthenogenetic forms of European Polydrusus weevils of the subgenus Scythodrusus, Ins. Sci., 2011, DOI:10.1111/j.1744-7917.2011.01448.x CrossrefGoogle Scholar

  • [49] Yoshitake H., Kato T., Jinbo U., Ito M., A new Wagnerinus (Coleoptera: Curculionidae) from northern Japan: description including a DNA barcode, Zootaxa, 2008, 1740, 15–27 Google Scholar

  • [50] Jurado-Rivera J.A., Vogler A.P., Reid C.A.M., Petitpierre E., Gómez-Zurita J., DNA barcoding insect-host plant associations, Proc. R. Soc. B: Biol, Sci., 2009, 276, 639–648 http://dx.doi.org/10.1098/rspb.2008.1264CrossrefGoogle Scholar

  • [51] Navarro S.P, Jurado-Rivera J.A., Gomez-Zurita J., Lyal C.H.C., Vogler A.P., DNA profiling of hostherbivore interactions in tropical forests, Ecol. Entomol., 2010, 35, 18–32 http://dx.doi.org/10.1111/j.1365-2311.2009.01145.xCrossrefGoogle Scholar

  • [52] Ascunce M.S., Nigg H.N., Clark A., Molecular Identification of the Economically Important Invasive Citrus Root Weevil Diaprepes abbreviatus (Coleoptera: Curculionidae), Florida Entomologist, 2009, 92, 167–172 http://dx.doi.org/10.1653/024.092.0130CrossrefGoogle Scholar

  • [53] Maryańska-Nadachowska A., Lachowska-Cierlik D., Drosopoulos S., Kajtoch Ł., Kuznetsova V.G., Molecular phylogeny of the Mediterranean species of Philaenus (Hemiptera: Auchenorrhyncha: Aphrophoridae) using mitochondrial and nuclear DNA sequences, Syst. Entomol., 2010, 25, 318–328 http://dx.doi.org/10.1111/j.1365-3113.2009.00510.xCrossrefGoogle Scholar

  • [54] Seabra S.G., Pina-Martins F., Marabuto E., Yurtsever S., Halkka O., Quartau J.A., et al., Molecular phylogeny and DNA barcoding in the meadow-spittlebug Philaenus spumarius (Hemiptera, Cercopidae) and its related species,. Mol. Phylogenet. Evol., 2010, 56, 462–467 http://dx.doi.org/10.1016/j.ympev.2010.03.023CrossrefGoogle Scholar

  • [55] Will K.W., Rubinoff D., Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification, Cladistics, 2004, 20, 47–55 http://dx.doi.org/10.1111/j.1096-0031.2003.00008.xCrossrefGoogle Scholar

  • [56] Elias M., Hill R.I., Willmott K.R., Dasmahapatra K.K., Brower A.V., Mallet J., et al., Limited performance of DNA barcoding in a diverse community of tropical butterflies, Proc. R. Soc. B: Biol, Sci., 2007, 274, 2881–2889 http://dx.doi.org/10.1098/rspb.2007.1035CrossrefGoogle Scholar

  • [57] Triponez Y., Buerki S., Borer M., Naisbit R.E., Rahier M., Alvarez, N, Discordances between phylogenetic and morphological patterns in alpine leaf beetles attest to an intricate biogeographic history of lineages in postglacial Europe, Mol. Eco., 2011, 57, 2442–2463 http://dx.doi.org/10.1111/j.1365-294X.2011.05096.xCrossrefGoogle Scholar

  • [58] Borer M., Alvarez N., Buerki S., Margraf N., Rahier M., Naisbit R.E., The phylogeography of an alpine leaf beetle: divergence within Oreina elongata spans several ice ages, Mol. Phylogenet. Evol., 2010, 20, 703–709 http://dx.doi.org/10.1016/j.ympev.2010.08.017CrossrefGoogle Scholar

  • [59] Haines M.L., Martin J.-F., Emberson R.M., Syrett P., Withers T.M., Worner S.P., Can sibling species explain the broadening of the host range of the broom seed beetle, Bruchidius villosus (F.) (Coleoptera: Chrysomelidae) in New Zealand?, New Zealand Entomologist, 2007, 30, 5–11 Google Scholar

About the article

Published Online: 2011-12-25

Published in Print: 2012-02-01

Citation Information: Open Life Sciences, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-011-0099-4.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Juan Wang, Li Zhang, Qi-Lin Zhang, Min-Qiang Zhou, Xiao-Tong Wang, Xing-Zhuo Yang, and Ming-Long Yuan
PeerJ, 2017, Volume 5, Page e3661
Pierre Ouvrard, Damien M. Hicks, Molly Mouland, James A. Nicholls, Katherine C.R. Baldock, Mark A. Goddard, William E. Kunin, Simon G. Potts, Thomas Thieme, Eve Veromann, Graham N. Stone, and Mari Kekkonen
Genome, 2016, Volume 59, Number 12, Page 1101
Łukasz Kajtoch, Daniel Kubisz, Jerzy M. Gutowski, Wiesław Babik, Calvin Dytham, and Ignacio Ribera
Insect Conservation and Diversity, 2014, Volume 7, Number 1, Page 41
Daniel Kubisz, Łukasz Kajtoch, Miłosz A. Mazur, Agata Lis, and Milada Holecová
Invertebrate Biology, 2012, Volume 131, Number 4, Page 333
Ł. Kajtoch, D. Kubisz, D. Lachowska-Cierlik, and M. A. Mazur
Journal of Insect Conservation, 2013, Volume 17, Number 1, Page 67

Comments (0)

Please log in or register to comment.
Log in