Jump to ContentJump to Main Navigation
Show Summary Details

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR increased in 2015: 0.814
5-year IMPACT FACTOR: 0.870

SCImago Journal Rank (SJR) 2015: 0.362
Source Normalized Impact per Paper (SNIP) 2015: 0.538
Impact per Publication (IPP) 2015: 0.929

Open Access
Online
ISSN
2391-5412
See all formats and pricing



Select Volume and Issue

Issues

Changes in migration phenology and biometrical traits of Reed, Marsh and Sedge Warblers

1„Adaptation to climate change” Research Group, Hungarian Academy of Sciences-Corvinus University of Budapest, HU-1118, Budapest, Hungary

2Faculty of Veterinary Sciences, Department of Biomathematics and Informatics, Szent István University, HU-1078, Budapest, Hungary

3Faculty of Veterinary Sciences, Clinic for Large Animals, Szent István University, HU-2225, Üllő, Hungary

4Department of Anatomy, Cell- and Developmental Biology, Eötvös Loránd University, HU-1117, Budapest, Hungary

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Life Sciences. Volume 7, Issue 1, Pages 115–125, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-011-0101-1, December 2011

Publication History

Published Online:
2011-12-25

Abstract

Global environmental processes like climate change could severely affect population level migratory behaviour of long range migrant birds. We analyzed changes in migration phenology and biometrics of three closely-related long-distance migrant Acrocephalus species. We used the records of 12 063 Sedge, 12 913 Reed, and 5 409 Marsh Warblers caught and ringed between 1989–2009, at a Hungarian stopover site. Quantile regressions were used to analyse the changes in spring and autumn migration phenology. Median spring arrival date of Sedge and Reed Warblers shifted 6.5 and 7.5 days earlier, respectively. Autumn arrival of all species shifted one (Reed and Marsh Warblers) or two (Sedge Warbler) weeks later. Mean body mass of adult Reed and Marsh Warblers decreased in spring (by 0.3 and 0.2 grams, respectively) and in autumn (by 0.8 and 0.2 grams, respectively) while body mass of adult Sedge Warblers decreased only in autumn (by 0.4 grams). Mean wing length of all species increased significantly (range of change: 0.6–1 mm). Despite the fact that the studied species are closely related, all three have remarkably different migration strategies. However, similar patterns can be observed in the studied parameters, indicating that global processes may have general effects on these species, albeit through markedly different mechanisms.

Keywords: Acrocephalus; Climate change; Timing of migration; Wing length; Body mass; Phenology

  • [1] Moller A.P., Fiedler W., Berthold P., Effects of climate change on birds, Oxford University Press Inc., USA, New York, 2010

  • [2] Lehikoinen E., Sparks T.H., Zalakevicius M., Arrival and departure dates, Adv. Ecol. Res., 2004, 35, 1–31 http://dx.doi.org/10.1016/S0065-2504(04)35001-4 [Crossref]

  • [3] Crick H.Q.P., Sparks T.H., Changes in the phenology of breeding and migration in relation to global climate change, Acta Zool. Sinica, 2006, 52, 154–157

  • [4] Gordo O., Why are bird migration dates shiftling? A review of weather and climate effects on avian migratory phenology, Clim. Res., 2007, 35, 37–58 http://dx.doi.org/10.3354/cr00713 [Crossref]

  • [5] Rubolini D., Moller A.P., Rainio K., Lehikoinen E., Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among European bird species, Clim. Res., 2007, 35, 135–146 http://dx.doi.org/10.3354/cr00720 [Crossref]

  • [6] Both C., Visser M.E., Adjustment to climate change is constrained by arrival date in a long-distance migrant bird, Nature, 2001, 411, 296–298 http://dx.doi.org/10.1038/35077063 [Crossref]

  • [7] Tryjanowski P., Kuźniak S., Sparks T., What affects the magnitude of change in first arrival dates of migrant birds?, J. Ornithol., 2005, 146, 200–205 http://dx.doi.org/10.1007/s10336-005-0079-4 [Crossref]

  • [8] Berthold P., Control of bird migration, Chapman and Hall London, 1st ed., London, 1996

  • [9] Hüpopp O., Hüpopp K., North Atlantic Oscillation and timing of spring migration in birds, Proc. R. Soc. London B. Biol. Sci., 2003, 270, 233–240 http://dx.doi.org/10.1098/rspb.2002.2236 [Crossref]

  • [10] Tottrup A.P., Thorup K., Rahbek C., Changes in timing of autumn migration in North European songbird populations, Ardea, 2006, 94, 527–536

  • [11] Zalakevicius M., Bartkeviciene G., Raudonikis L., Januaitis J., Spring arrival response to climate change in birds: a case study from Eastern Europe, J. Ornithol., 2006, 147, 326–343 http://dx.doi.org/10.1007/s10336-005-0016-6 [Crossref]

  • [12] Knudsen E., Lindén A., Both C., Jonzen N., Pulido F., Saino N., et al., Challenging claims in the study of migratory birds and climate change, Biol. Rev. Camb. Philos. Soc., 2011, 86, 928–946 http://dx.doi.org/10.1111/j.1469-185X.2011.00179.x [Crossref]

  • [13] Cotton P.A., Avian migratory phenology and global climate change, PNAS, 2003, 100, 12219–12222 http://dx.doi.org/10.1073/pnas.1930548100 [Crossref]

  • [14] Gordo O., Sanz J.J., Phenology and climate change: a long-term study in a Mediterranean locality, Oecologia, 2005, 146, 484–495 http://dx.doi.org/10.1007/s00442-005-0240-z [Crossref]

  • [15] Kokko H., Competition for early arrival in migratory birds, J Anim. Ecol., 1999, 68, 940–950 http://dx.doi.org/10.1046/j.1365-2656.1999.00343.x [Crossref]

  • [16] Forstmeier W., Benefits of early arrival at breeding grounds vary between males, J. Anim. Ecol., 2002, 71, 1–9 http://dx.doi.org/10.1046/j.0021-8790.2001.00569.x [Crossref]

  • [17] Dunn P.O., Breeding dates and reproductive performance, Adv. Ecol. Res., 2004, 35, 69–87 http://dx.doi.org/10.1016/S0065-2504(04)35004-X [Crossref]

  • [18] Jonzén N., Lindén A., Ergon T., Knudsen E., Vik J.O., Rubolini D., et al., Rapid advance of spring arrival dates in long-distance migratory birds, Science, 2006, 312, 1959–1961 http://dx.doi.org/10.1126/science.1126119 [Crossref]

  • [19] Gienapp R., Leimu R., Merilä J., Responses to climate change in avian migration time -microevolution versus phanotypic plasticity, Clim. Res., 2007, 35, 25–35 http://dx.doi.org/10.3354/cr00712 [Crossref]

  • [20] Jenni L., Kéry M., Timing of autumn bird migration under climate change: advances in long-distance migrants, delays in short-distance migrants, Proc. R. Soc. London B., 2003, 270, 1467–1471 http://dx.doi.org/10.1098/rspb.2003.2394 [Crossref]

  • [21] Péron G., Henry P-Y., Provost P., Dehorter O., Julliard R., Climate changes and post-nuptial migration strategy by two reedbed passerines, Clim. Res., 2007, 35, 147–157 http://dx.doi.org/10.3354/cr00721 [Crossref]

  • [22] Coppack T., Pulido F., Berthold P., Photoperiodic response to early hatching in a migratory bird species, Oecologia, 2001, 128, 181–186 http://dx.doi.org/10.1007/s004420100652 [Crossref]

  • [23] Catry P., Bearhop S., Lecoq M., Sex differences in settlement behaviour and condition of Chiffchaffs Phylloscopus collybita at a wintering site in Portugal. Are females doing better?, J. Ornithol., 2007, 148, 241–249 http://dx.doi.org/10.1007/s10336-007-0130-8 [Crossref]

  • [24] Tryjanowski P., Sparks T.H., The relationships between phenological traits and brood size of the white stork Ciconia ciconia in western Poland., 2008, Acta Oecol., 33, 203–206 http://dx.doi.org/10.1016/j.actao.2007.10.010 [Crossref]

  • [25] Miholcsa T., Tóth A., Csörgő T., Change of the timing of autumn migration in Acrocephalus and Locustella genus, Acta Zool. Acad. Sci. H., 2009, 55, 175–185

  • [26] Jacubas D., Wojczulanis-Jacubas K., Sex- and agerelated differences in the timing and body condition of migrating Reed Warblers Acrocephalus scirpaceus and Sedge Warblers Acrocephalus schoenobaenus, Naturwissenschaften, 2010, 97, 505–511 http://dx.doi.org/10.1007/s00114-010-0666-y [Crossref]

  • [27] Kovács Sz., Csörgő T., Harnos A., Fehérvári P., Nagy K., Change in migration phenology and biometrics of two conspecific Sylvia species in Hungary., J. Ornithol., 2011, 152, 365–373 http://dx.doi.org/10.1007/s10336-010-0596-7 [Crossref]

  • [28] Salewski V., Hochachka W.M., Fiedler W., Global warming and Bergmann’s rule: do central European passerines adjust their body size to rising temperatures?, Oecologia, 2010, 162, 247–260 http://dx.doi.org/10.1007/s00442-009-1446-2 [Crossref]

  • [29] Yom-Tov Y., Yom-Tov S., Wright J., Thorne C.J.R., Du Feu R., Recent changes in body weight and wing length among some British passerine birds, Oikos, 2006, 112, 91–101 http://dx.doi.org/10.1111/j.0030-1299.2006.14183.x [Crossref]

  • [30] Lockwood R., Swaddle J.P., Rayner J.M.V., Avian wing shape reconsidered: wingtip shape indices and morphological adaptation to migration, J. Avian Biol., 1998, 29, 273–292 http://dx.doi.org/10.2307/3677110 [Crossref]

  • [31] Peiró I.G., Intraspecific variation in the wing shape of the long-distance migrant Reed Warbler Acrocephalus scirpaceus: effects of age and distance of migration, Ardeola, 2003, 50, 31–37

  • [32] Cramp S., Brooks D.J., Handbook of the Birds of Europe and Middle East and North Africa: The Birds of the Western Palearctic Volume VI: Warblers, Oxford University Press, Oxford, 1992

  • [33] Fransson T., Stolt B.O., Migration routes of North European Reed Warblers Acrocephalus scirpaceus, Orn. Svec., 2005, 15, 153–160

  • [34] Csörgő T., Ujhelyi P., Migration strategies of Acrocephalus species from an analysis of recaptures, In: Gyurácz J (Ed.), The 3rd Scientific Meeting of the Hungarian Ornithological and Nature Conservation Society, (1991, Szombathely, Hungary), Hungarian Ornithological and Nature Conservation Society, 2011, 111–122, (in Hungarian)

  • [35] Csörgő T, Gyurácz J., Reed Warbler in Csörgő T., Karcza Zs., Halmos G., Magyar G., Gyurácz J., Szép T., et al. (Eds.), Hungarian Bird Migration Atlas, Kossuth Kiadó Zrt., Budapest, 2009, (in Hungarian)

  • [36] Balança G., Schaub M., Post-breeding migration ecology of Reed Acrocephalus scirpaceus, Moustached A. melanopogon and Cetti’s Warblers Cettia cetti at a Mediterranean stopover site, Ardea, 2005, 93, 245–257

  • [37] Bibby C.J., Green R.E., Autumn migration strategies of Reed and Sedge Warblers, Ornis Scand., 1981, 12, 1–12 http://dx.doi.org/10.2307/3675898 [Crossref]

  • [38] Csörgő T., Gyurácz J., Sedge Warbler in Csörgő T, Karcza Zs, Halmos G, Magyar G, Gyurácz J, Szép T, et al. (Eds.), Hungarian Bird Migration Atlas, Kossuth Kiadó Zrt., Budapest, 2009, (in Hungarian)

  • [39] Dowsett-Lemaire F., Dowsett R.J., European Reed and Marsh Warblers in Africa: migration patterns, moult and habitat, Ostrich, 1987, 58, 65–85 http://dx.doi.org/10.1080/00306525.1987.9634145 [Crossref]

  • [40] Pearson D.J., Palaearctic passerine migrants in Kenya and Uganda: temporal and spatial patterns of their movements, In: Gwinner E. (Ed.), Bird migration: physiology and ecophysiology, Springer-Verlag, Berlin, 1990

  • [41] Csörgő T., Gyurácz J., Marsh Warbler in Csörgő T., Karcza Zs., Halmos G., Magyar G., Gyurácz J., Szép T., et al. (Eds.), Hungarian Bird Migration Atlas, Kossuth Kiadó Zrt., Budapest, 2009, (in Hungarian)

  • [42] Thorup K., Rabol J., The orientation system and migration pattern of long-distance migrants: conflict between model predictions and observed patterns, J. Avian Biol., 2001, 32, 111–119 http://dx.doi.org/10.1034/j.1600-048X.2001.320203.x [Crossref]

  • [43] Bergmann F., Long-term increase in numbers of early-fledged Reed Warblers (Acrocephalus scirpaceus) at Lake Constance (Southern Germany), J. Ornithol., 1999, 140, 81–86 http://dx.doi.org/10.1007/BF02462091 [Crossref]

  • [44] Spottiswoode C.N., Tottrup A.P., Coppack, T., Sexual selection predicts advancement of avian spring migration in response to climate change, Proc. R. Soc. London B., 2006, 273, 3023–3029 http://dx.doi.org/10.1098/rspb.2006.3688 [Crossref]

  • [45] Sparks T., Tryjanowski P., The detection of climate impacts: some methodological considerations, Int. J. Climatol., 2005, 25, 271–277 http://dx.doi.org/10.1002/joc.1136 [Crossref]

  • [46] Knudsen E., Lindén A., Ergon T., Jonzén N., Vik J., Knape J., et al., Characterizing bird migration phenology using data from standardized monitoring at bird observatories, Clim. Res., 2007, 35, 59–77 http://dx.doi.org/10.3354/cr00714 [Crossref]

  • [47] Szentendrey G., Lövei G., Kállay Gy., 1979: The „Actio Hungarica” bird ringing netwok, Állattani Közl., 1979, 66, 161–166, (in Hungarian)

  • [48] Svensson L., Identification guide to European Passerines, 4th ed., Ugga, Stockholm, 1992

  • [49] Kaiser A., A New Multi-Category Classification of Subcutaneous Fat Deposits of Songbirds, J. Field Ornithol., 1993, 64, 246–255

  • [50] Cade B.S., Noon B.R., A gentle introduction to quantile regression for ecologists, Front. Ecol. Environ., 2003, 1, 412–420 http://dx.doi.org/10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2 [Crossref]

  • [51] Askeyev O.V., Sparks T.H., Askeyev I.V., Tryjanowski P., Spring migration timing of Sylvia warblers in Tatarstan (Russia) 1957–2008, Cent. Eur. J. Biol., 2009, 4, 595–602 http://dx.doi.org/10.2478/s11535-009-0046-9 [Crossref]

  • [52] Csörgő T., Passerine bird species of the hedge vegetation and swamp zones, In: Vásárhelyi, T. (Ed.), Animal world of reed beds, Hungarian National History Museum, Budapest, 1995, 138–144, (in Hungarian)

  • [53] Akriotis T., Post-breeding migration of Reed and Great Reed Warblers breeding in south-east Greece, Bird Study, 1998, 45, 344–352 http://dx.doi.org/10.1080/00063659809461106 [Crossref]

  • [54] Woodrey M., Age-dependent aspects of stopover biology of passerine migrants, Stud. Avian Biol., 2000, 20, 43–52

  • [55] Yosef R., Chernetsov N., Longer is fatter: body mass changes of migrant Reed Warblers (Acrocephalus scirpaceus) staging at Eilat, Israel, Ostrich, 2005, 76, 142–147 http://dx.doi.org/10.2989/00306520509485486 [Crossref]

  • [56] Bolshakov C., Bulyuk V., Chernetsov N., Spring nocturnal migration of Reed Warblers Acrocephalus scirpaceus: departure, landing and body condition, Ibis, 2003, 145, 106–112 http://dx.doi.org/10.1046/j.1474-919X.2003.00128.x [Crossref]

  • [57] Gordo O., Brotons L., Ferrer X., Comas P., Do changes in climate patterns in wintering areas affect the timing of the spring arrival of trans-Saharan migrant birds?, Glob. Change Biol., 2005, 11, 12–21 http://dx.doi.org/10.1111/j.1365-2486.2004.00875.x [Crossref]

  • [58] Aidley D.J., Wilkinson R., The annual cycle of six Acrocephalus warblers in a Nigerian reed-bed, Bird Study, 1987, 34, 226–234 http://dx.doi.org/10.1080/00063658709476965 [Crossref]

  • [59] Le Houérou H.N., Climate change, drought and desertification, J. Arid Environ., 1996, 34, 133–185 http://dx.doi.org/10.1006/jare.1996.0099 [Crossref]

  • [60] Bale J.S., Masters G.J., Hodkinson I.D., Awmack C., Bezemer T.M., Brown V.K., et al., Herbivory in global climate change research: direct effects of rising temperature on insect herbivores, Glob. Change Biol., 2002, 8, 1–16 http://dx.doi.org/10.1046/j.1365-2486.2002.00451.x [Crossref]

  • [61] Thomas C.D., Lennon J.J., Birds extend their ranges northwards, Nature, 1999, 399, 213 http://dx.doi.org/10.1038/20335 [Crossref]

  • [62] BirdLife International, Birds in Europe: population estimates, trends and conservation status, Birdlife Conservation Series 12, Birdlife International, Cambridge, 2004

  • [63] Brommer J.E., The range margins of northern birds shift polewards, Ann. Zool. Fennici, 2004, 41, 391–397

  • [64] Huntley B., Green R., Collingham Y., Willis S.A., Climatic Atlas of European Breeding Birds, The RSPB and Lynx Edicions, Barcelona, 2007

  • [65] Jiguet F., Devictor V., Ottvall R,. Van Turnhout C., Van der Jeugd H., Lindström A., Bird population trends are linearly affected by climate change along species thermal ranges, Proc. R. Soc. London B., 2010, 277, 3601–3608 http://dx.doi.org/10.1098/rspb.2010.0796 [Crossref]

  • [66] Ktitorov P., Tsvey A., Mukhin A., The good and the bad stopover: behaviours of migrant Reed Warblers at two contrasting sites, Behav. Ecol. Sociobiol., 2010, 64, 1135–1143 http://dx.doi.org/10.1007/s00265-010-0929-9 [Crossref]

  • [67] Spina F., Bezzi E.M., Autumn migration and orientation of Sedge Warbler (Acrocephalus schoenobaenus) in Northern Italy, J. Ornithol., 1990, 131, 429–438 http://dx.doi.org/10.1007/BF01639819 [Crossref]

  • [68] Brewer R., Harrison K.G., The time of habitat selection by birds, Ibis, 1975, 117, 521–522 http://dx.doi.org/10.1111/j.1474-919X.1975.tb04248.x [Crossref]

  • [69] Morton M.L., Effects of sex and birth date on premigration biology, migration schedules, return rates and natal dispersal in the mountain Whitecrowned Sparrow, Condor, 1992, 94, 117–133 http://dx.doi.org/10.2307/1368802 [Crossref]

  • [70] Vadász Cs., Német Á., Karcza Zs., Loránt M., Bíró Cs., Csörgő T., Study on breeding site fidelity of Acrocephalus warblers in Central Hungary, Acta Zool. Acad. Sci. H., 2008, 54, 167–175

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
JBC Harris, DL Yong, NS Sodhi, R Subaraj, DA Fordham, and BW Brook
Climate Research, 2013, Volume 57, Number 2, Page 133

Comments (0)

Please log in or register to comment.