Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 7, Issue 3

Issues

Volume 10 (2015)

Biologically active secondary metabolites from Actinomycetes

Jolanta Solecka
  • Laboratory of Biologically Active Compounds, National Institute of Public Health — National Institute of Hygiene, 00-791, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joanna Zajko
  • Laboratory of Biologically Active Compounds, National Institute of Public Health — National Institute of Hygiene, 00-791, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Magdalena Postek
  • Laboratory of Biologically Active Compounds, National Institute of Public Health — National Institute of Hygiene, 00-791, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aleksandra Rajnisz
  • Laboratory of Biologically Active Compounds, National Institute of Public Health — National Institute of Hygiene, 00-791, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-04-03 | DOI: https://doi.org/10.2478/s11535-012-0036-1

Abstract

Secondary metabolites obtained from Actinomycetales provide a potential source of many novel compounds with antibacterial, antitumour, antifungal, antiviral, antiparasitic and other properties. The majority of these compounds are widely used as medicines for combating multidrug-resistant Gram-positive and Gram-negative bacterial strains. Members of the genus Streptomyces are profile producers of previously-known secondary metabolites. Actinomycetes have been isolated from terrestrial soils, from the rhizospheres of plant roots, and recently from marine sediments. This review demonstrates the diversity of secondary metabolites produced by actinomycete strains with respect to their chemical structure, biological activity and origin. On the basis of this diversity, this review concludes that the discovery of new bioactive compounds will continue to pose a great challenge for scientists.

Keywords: Bioactive; Secondary metabolites; Antibacterial properties; Cytotoxicity; Streptomyces sp

  • [1] Demain A.L., Sanchez S., Microbial drug discovery: 80 years of progress, J. Antibiot., 2009, 62, 5–16 http://dx.doi.org/10.1038/ja.2008.16CrossrefGoogle Scholar

  • [2] Donadio S., Monciardini P., Alduina R., Mazza P., Chiocchini C., Cavaletti L., et al., Microbial technologies for the discovery of novel bioactive metabolites, J. Biotechnol., 2002, 99, 187–198 http://dx.doi.org/10.1016/S0168-1656(02)00209-2CrossrefGoogle Scholar

  • [3] Bérdy J., Bioactive microbial metabolites, J. Antibiot., 2005, 58, 1–26 http://dx.doi.org/10.1038/ja.2005.1CrossrefGoogle Scholar

  • [4] Lam K.S., New aspects of natural products in drug discovery, Trends in Microbiol., 2007, 15, 279–289 http://dx.doi.org/10.1016/j.tim.2007.04.001CrossrefGoogle Scholar

  • [5] Jensen P.R., Mincer T.J., Williams P.G., Fenical W., Marine actinomycete diversity and natural product discovery, Antonie van Leeuwenhoek, 2005, 87, 43–48 http://dx.doi.org/10.1007/s10482-004-6540-1CrossrefGoogle Scholar

  • [6] Bull A.T., Stach J.E., Marine actinobacteria: New opportunities for natural product search and discovery, Trends Microbiol., 2007, 15, 491–499 http://dx.doi.org/10.1016/j.tim.2007.10.004CrossrefGoogle Scholar

  • [7] Pimentel-Elardo S.M., Kozytska S., Bugni T.S., Ireland Ch.M., Moll H., Hentschel U., Anti-Parastic Compounds from Streptomyces sp. Strains Isolated from Mediterranean Sponges, Mar. Drugs, 2010, 8, 373–380 http://dx.doi.org/10.3390/md8020373CrossrefGoogle Scholar

  • [8] Fenical W., Jensen P.R., Developing a new resource for drug discovery: Marine actinomycetebacteria, Nat. Chem. Bol., 2006, 2, 666–673 http://dx.doi.org/10.1038/nchembio841CrossrefGoogle Scholar

  • [9] Penesyan A., Kjelleberg S., Egan S., Development of Novel Drugs from Marine Surface Associated Microorganisms, Mar. Drugs, 2010, 8, 438–459 http://dx.doi.org/10.3390/md8030438CrossrefGoogle Scholar

  • [10] Blunt J.W., Copp B., Munro M.H., Northcote P.T., Prinsep M.R., Marine natural products, Nat. Prod. Rep., 2010, 27, 165–237 http://dx.doi.org/10.1039/b906091jCrossrefGoogle Scholar

  • [11] Bhatnagar I., Se-Kwon K., Immense of Excellence: Marine Microbial Bioactive Compounds, Mar. Drugs, 2010, 8, 2673–2701 http://dx.doi.org/10.3390/md8102673CrossrefGoogle Scholar

  • [12] Simmons T.L., Andrianasolo E., McPhail K., Flatt P., Gerwick W.H., Marine natural products as anticancer drugs, Mol. Canc. Ther., 2005, 4, 333–342 Google Scholar

  • [13] Bentley S.D., Chater K.F., Cerdeño-Tárraga A.M., Challis G.L., Thomson N.R., James K.D., et al., Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2), Nature, 2002, 417, 141–147 http://dx.doi.org/10.1038/417141aCrossrefGoogle Scholar

  • [14] Watve M.G., Tickoo R., Jog M.M., Bhole B.D., How many antibiotics are produced by the genus Streptomyces?, Arch. Microbiol., 2001, 176, 386–390 http://dx.doi.org/10.1007/s002030100345CrossrefGoogle Scholar

  • [15] Ruiz B.R., Forero A., Garcia-Huante Y., Romero A., Sánchez M., Rocha D., et al., Production of microbial secondary metabolites: Regulation by the carbon source, Crit. Rev. Microbiol., 2010, 36, 146–167 http://dx.doi.org/10.3109/10408410903489576CrossrefGoogle Scholar

  • [16] Singh M.P., Greenstein M., Antibacterial leads from microbial natural products discovery, Curr. Opin. Drug Discov. Develop., 2000, 3, 167–176 Google Scholar

  • [17] Demain A.L., Vaishnav P., Involvement of nitrogencontaining compounds in β-lactam biosynthesis and its control, Critical Rev. Biotechnol., 2006, 26, 67–82 http://dx.doi.org/10.1080/07388550600671466CrossrefGoogle Scholar

  • [18] Challis G.L., Hopwood D.A., Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species, PNAS, 2003, 100, 14555–14561 http://dx.doi.org/10.1073/pnas.1934677100CrossrefGoogle Scholar

  • [19] Hopwood D.A., Streptomyces In Nature and Medicine. The antibiotic makers, Oxford University Press, 2007 Google Scholar

  • [20] Duggar B.M., Aureomycin: a product of the continuing search for new antibiotics, Ann. N. Y. Acad. Sc., 1948, 51, 177–181 http://dx.doi.org/10.1111/j.1749-6632.1948.tb27262.xCrossrefGoogle Scholar

  • [21] Cockerill F.R., Wikler M.A., Bush K., Dudley M.N., Eliopoulos G.M., Hardy D.J. et al., Performance Standards for Antimicrobial Susceptibility testing; Twentieth Informational Supplement, Clinical and Laboratory Standards Institute, 2010 Google Scholar

  • [22] Schatz A., Bugie E., Waksman S.A., Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria, Proc. Soc. Exp. Biol. Med., 1944, 55, 66–69 CrossrefGoogle Scholar

  • [23] Himbindu M., Annapurna J., Optimization of nutritional requirements for gentamicin production by Micromonospora echinospora, Ind. J. Exper. Biol., 2006, 44, 842–848 Google Scholar

  • [24] Borodina I., Schöller Ch., Eliason A., Nielsen J., Metabolic Network Analysis of Streptomyces tenebrarius, a Streptomyces Species with an Active Entner-Doudoroff Pathway, Appl. Environ. Microbiol., 2005, 71, 2294–2302 http://dx.doi.org/10.1128/AEM.71.5.2294-2302.2005CrossrefGoogle Scholar

  • [25] Waksman S.A., Lechevalier H.A., Neomycin, a new antibiotic against streptomycin - resistant bacteria, including tuberculosis organisms, Science, 1949, 109, 305–307 http://dx.doi.org/10.1126/science.109.2830.305CrossrefGoogle Scholar

  • [26] McCormick M.H., Stark W.M., Pittenger G.E., McGuire J.M., Vancomycin, a new antibiotic. I. Chemical and biologic properties, Antibiot. Annu., 1956, 606, 1955–1956 Google Scholar

  • [27] Parenti F., Beretta G., Berti M., Arioli V., Teichomycin, New antibiotics from Actinoplanes teichomyceticus, nov. sp., 1. Description of the producer strain, fermentation studies and biological properties, J. Antibiot., 1978, 31, 276–281 http://dx.doi.org/10.7164/antibiotics.31.276Google Scholar

  • [28] McGuire J.M., Bunch R.L., Anderson R.C., Boaz H.E., Flynn E.H., Powell H.M., et al., “Ilotycin” a new antibiotic, Antibiot. Chemother., 1952, 2, 281–283 Google Scholar

  • [29] Hazen E.L.; Brown R. Fungicidin, an antibiotic produced by a soil actinomycete. Proc. Soc. Exp. Biol. Med., 1951, 76, 93–97 CrossrefGoogle Scholar

  • [30] Kirst H.A., Macrolide antibiotics in food-animal health, Expert Opin. Investig. Drugs, 1997, 6, 103–118 http://dx.doi.org/10.1517/13543784.6.2.103CrossrefGoogle Scholar

  • [31] Hendlin D., Stapley E.O., Jackson M., Wallick H., Miller A.K., Wolf F.J., et al., Phosphonomycin, a new antibiotic produced by strains of Streptomyces, Science, 1969, 166, 122–123 http://dx.doi.org/10.1126/science.166.3901.122CrossrefGoogle Scholar

  • [32] Nett M., Ikeda H., Moore B.S., Genomic basis for natural product biosynthetic diversity in the actinomycetes, Nat. Prod. Rep., 2009, 26, 1362–1384 http://dx.doi.org/10.1039/b817069jCrossrefGoogle Scholar

  • [33] Bertasso M., Holzen Kämpfer M., Zeeck A., Dall’Antonia F., Fiedler H.P., Bagremycin A and B, Novel Antibiotics from Streptomyces spTü 4128, J. Antibiot., 2001, 54, 730–736 http://dx.doi.org/10.7164/antibiotics.54.730CrossrefGoogle Scholar

  • [34] Newman, D.J., Cragg, G.M., Natural products as sources of new drugs over the last 25 years, J. Nat. Prod., 2007, 70, 461–477 http://dx.doi.org/10.1021/np068054vCrossrefGoogle Scholar

  • [35] Demain A.L. History of Industrial Biotechnology. Industrial Biotechnology: Sustainable Growth and Economic Success, Wiley-VCH Verlag GmbH & Co. KGaA, 2010 Google Scholar

  • [36] Garcia-Mendoza C., Studies on the mode of action of etamycin (Viridogrisein), Biochim. Biophys. Acta., 1965, 97, 394–396 http://dx.doi.org/10.1016/0304-4165(65)90121-2CrossrefGoogle Scholar

  • [37] Haste N.M., Perera V.R., Maloney K.N., Tran D.N., Jensen P., Fenical W., Nizet V., et al., Activity of the streptogramin antibiotic etamycin against methicillin-resistant Staphylococcus aureus, J. Antibiot., 2010, 63, 219–224 http://dx.doi.org/10.1038/ja.2010.22CrossrefGoogle Scholar

  • [38] Kitani S., Yamauchi T., Fukshima E., Kwon Lee Ch., Ningsih F., Kinoshita H., et al., Characterization of varM Encoding Type II ABC Transporter in Streptomyces Virginiae, a Virginiamycin M1 Producer, Actinomycetologica, 2010, 24, 51–57 http://dx.doi.org/10.3209/saj.SAJ240206CrossrefGoogle Scholar

  • [39] Metzger R., Bonatti H., Sawyer R., Future trends in the treatment of serious gram-positive infections, Drugs Today (Barc), 2009, 45, 33–45 http://dx.doi.org/10.1358/dot.2009.45.1.1315922CrossrefGoogle Scholar

  • [40] Balz R.H., Miao V., Wrigley S.K., Natural products to drugs: daptomycin and related lipopeptide antibiotics, Nat. Prod. Rep., 2005, 22, 717–741 http://dx.doi.org/10.1039/b416648pCrossrefGoogle Scholar

  • [41] Miao V., Coëffet-LeGal M., Brian P., Brost R., Penn J., Whiting A., et al., Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry, Microbiology, 2005, 151, 1507–1523 http://dx.doi.org/10.1099/mic.0.27757-0CrossrefGoogle Scholar

  • [42] Nicolaou K.C., Tria G.S., Edmonds D.J., Kar M., Total Syntheses of (±)-Platencin and (−)-Platencin, J. Am. Chem. Soc., 2009, 131, 15909–15917 http://dx.doi.org/10.1021/ja906801gCrossrefGoogle Scholar

  • [43] Junker B., Walker A., Hesse M., Lester M., Christensen J., Connors N., Actinomycetes scaleup for the production of antibacterial, nocathiacin, Biotechnol.Prog., 2009, 25, 176–188 http://dx.doi.org/10.1002/btpr.122CrossrefGoogle Scholar

  • [44] Zhang C., Zink DL., Ushio M., Burgess B., Onishi R., Masurekar P., et al., Isolation, structure, and antibacterial activity of thiazomycin A, a potent thiazolyl peptide antibiotic from Amycolatopsis fastidiosa, Bioorg. Med. Chem., 2008, 16, 8818–8823 http://dx.doi.org/10.1016/j.bmc.2008.08.079CrossrefGoogle Scholar

  • [45] Singh SB., Occi J., Jayasuriya H., Herath K., Motyl M., Dorso K., et al., Antibacterial evaluations of thiazomycin- a potent thiazolyl peptide antibiotic from Amycolatopsis fastidiosa, J. Antibiot., 2007, 60, 565–71 http://dx.doi.org/10.1038/ja.2007.71CrossrefGoogle Scholar

  • [46] Solecka J., Rajnisz A., Laudy A.E., A novel isoquinoline alkaloid, DD-carbxypeptidase inhibitor, with antibacterial aitvity isolated from Streptomyces sp. 8812. Part I: Taxonomy, isolation and biological activities, J. Antibiot., 2009, 62, 575–580 http://dx.doi.org/10.1038/ja.2009.85CrossrefGoogle Scholar

  • [47] Solecka J., Sitkowski J., Bocian W., Kawęcki R., Kozerski L., A novel isoquinoline alkaloid, DD-carbxypeptidase inhibitor, with antibacterial activity isolated from Streptomyces sp. 8812. Part II: Physicochemical properties and structure elucidation, J. Antibiot., 2009, 62, 581–585 http://dx.doi.org/10.1038/ja.2009.86CrossrefGoogle Scholar

  • [48] Hashizume H.; Adachi H.; Igarashi M.; Nishimura Y.; Akamats Y. Biological activities of pargamicin A, a novel cyclic peptide antibiotic from Amycolatopsis sp., J. Antibiot., 2010, 63, 279–283 http://dx.doi.org/10.1038/ja.2010.29CrossrefGoogle Scholar

  • [49] McArthur K.A.; Mitchell S.S.; Tsueng G.; Rheingold A.; White D.J.; Grodberg J., et al., Lynamycins A-E, chlorinated bisindolepyrrole antibiotics from a novel marine actinomycete, J. Nat. Prod., 2008, 71, 1732–1737 http://dx.doi.org/10.1021/np800286dCrossrefGoogle Scholar

  • [50] Carlson J.C., Li S., Burr D.A., Sherman D.H., Isolation and Characterization of Tirandamycins from Marine-Derived Streptomyces sp., J. Nat. Prod., 2009, 72, 2076–2079 http://dx.doi.org/10.1021/np9005597CrossrefGoogle Scholar

  • [51] Kwon H.C., Kauffman C.A., Jensen P.R., Fenical W., Marinomycin A-D, antitumour antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “Marinispora”, J. Am. Chem. Soc., 2006, 128, 1622–1632 http://dx.doi.org/10.1021/ja0558948CrossrefGoogle Scholar

  • [52] Roh H., Uguru G.C., Ko H.J., Kim S., Kim B.Y., Goodfellow M., et al, Genome sequence of the abyssomicin- and proximicin-producing marine actinomycete Verrucosispora maris AB-18-032, J. Bacteriol., 2011, 193, 3391–2 http://dx.doi.org/10.1128/JB.05041-11CrossrefGoogle Scholar

  • [53] Fiedler H.P., Bruntner C., Bull A.T., Ward A.C., Goodfellow M., Potterat O., et al., Marine actinomycetes as a source of novel secondary metabolites, Antonie van Leeuwenhoek, 2005, 87, 37–42 http://dx.doi.org/10.1007/s10482-004-6538-8CrossrefGoogle Scholar

  • [54] Bister B., Bischoff D., Ströbele M., Riedlinger J., Reicke A., Wolter F., et al., Abyssomycin C-A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway, Angew. Chem. Int. Ed., 2004, 43, 2574–2576 http://dx.doi.org/10.1002/anie.200353160CrossrefGoogle Scholar

  • [55] Hohmann C., Schneider K., Bruntner C., Brown R., Jones A.L., Goodfellow M., et al., Albidopyrone, a new α-pyrone-containing metabolite from marinederive Streptomyces sp. NTK 227, J. Antibiot., 2009, 62, 75–79 http://dx.doi.org/10.1038/ja.2008.15CrossrefGoogle Scholar

  • [56] Huang H., Wu X., Yi S., Zhou Z., Zhu J., Fang Z., et al., Rifamycin S and its geometric isomer produced by a newly found actinomycete, Micromonospora rifamycinica, Antonie van Leeuwenhoek, 2009, 95, 143–148 http://dx.doi.org/10.1007/s10482-008-9297-0CrossrefGoogle Scholar

  • [57] Xie Y., Xu H., Sun Ch., Yu Y., Chen R., Two novel nucleosidyl-peptide antibiotics: Sansanmycin F and G produced by Streptomyces sp. SS, J. Antibiotic., 2010, 63, 143–146 http://dx.doi.org/10.1038/ja.2010.6CrossrefGoogle Scholar

  • [58] Tohyama S., Takahashi Y., Akamatsu Y., Biosynthesis of amycolamicin: the biosynthetic origin of a branched α-aminoethyl moiety in the unusual sugar amycolose, J. Antibiot., 2010, 63, 147–149 http://dx.doi.org/10.1038/ja.2010.1CrossrefGoogle Scholar

  • [59] El-Gendy M.M.A., Hawas U.W., Jaspars M., Novel Bioactive Metabolites from a Marine Derived Bacterium Nocardia sp. ALAA 2000, J. Antibiot., 2008, 61, 379–386 http://dx.doi.org/10.1038/ja.2008.53CrossrefGoogle Scholar

  • [60] Parry R., Nishino S., Spain J., Naturally-occurring nitro compounds, Nat. Prod. Rep., 2011, 28, 152–167 http://dx.doi.org/10.1039/c0np00024hCrossrefGoogle Scholar

  • [61] Tee E.H.L., Karoli T., Ramu S., Huang J.X., Butler M.S., Cooper M.A., Synthesis of Essramycin and Comparison of Its Antibacterial Activity, J. Nat. Prod., 2010, 73, 1940–1942 http://dx.doi.org/10.1021/np100648qCrossrefGoogle Scholar

  • [62] Yu Z., Zhao L.X., Jiang Ch.L., Duan Y., Wong L., Carver K.C., et al., Bafilomycins produced by an endophytic actinomycete Streptomyces sp., YIM56209, J. Antibiot., 2011, 64, 159–162 http://dx.doi.org/10.1038/ja.2010.147CrossrefGoogle Scholar

  • [63] Werner G., Hagenmaier H., Metabolic products of microorganisms.224, Bafilomycins, a new Group of Macrolide Antibiotics, J. Antibiot., 1984, 37, 110–117 http://dx.doi.org/10.7164/antibiotics.37.110Google Scholar

  • [64] Venkat R.M., Liu J., Sunga M., White D.J., Grodberg J., Teisan S., et al., Lipoxazolidinones A, B and C: Antibacterial 4-Oxazolidinones from a Marine Actinomycete Isolated from a Guam Marione Sediment, J. Nat. Prod., 2007, 70, 1454–1457 http://dx.doi.org/10.1021/np0702032CrossrefGoogle Scholar

  • [65] Abdalla M.A., Helmke E., Laatsch H., Fujianmycin C, A Bioactive Angucyclinone from a Marine Derived Streptomyces sp. B6219 [1], Nat. Prod. Comm., 2010, 5, 1917–1920 Google Scholar

  • [66] Waksman S.A., Woodruff H.B., Actinomyces antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria, J. Bacteriol., 1941, 42, 231–249 Google Scholar

  • [67] Arcamone F., Cassinelli G., Fantini G., Grein A., Orezzi P., Pol C., et al., Adriamycin, 14-Hydroxydaunomycin, a new antitumor antibiotic from Streptomyces peucetius var. caesius, Biotechnol. Bioeng., 1969, 11, 1101–1110 http://dx.doi.org/10.1002/bit.260110607CrossrefGoogle Scholar

  • [68] Ishizuka M., Takayama H., Takeuchi T., Umezawa H., Activity and toxicity of bleomycin, J. Antibiot., 1967, 20, 15–24 Google Scholar

  • [69] Schein P.S., Macdonald J.S., Hot D.W., Wooley P.V., The FAM (5-fluorouracil, adriamycin, mitomycin C) and SMF (streptozotocin, mitomycin C, 5-fluorouracil) chemotherapy regiment, In: Carter S.K., Crooke S.T., Alder N.A. (Eds.), Mitomycin C: Current Status and New Developments, Academic Press, New York, 1979 Google Scholar

  • [70] Wang Z., Gleichman H., GLUTS2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice, Diabetes, 1998, 47, 50–56 http://dx.doi.org/10.2337/diabetes.47.1.50Google Scholar

  • [71] Walker S., Landovitz R., Ding W.D., Ellestad G. A., Kahne D., Cleavage behavior of calicheamycin gamma 1 and calicheamycin T., Proc. Natl. Acad. Sci. USA, 1992, 89, 4608–4612 http://dx.doi.org/10.1073/pnas.89.10.4608CrossrefGoogle Scholar

  • [72] Zhang H., Sun G.S., Li X., Pan H.L., Zhang Y.S., A New Geldanamycin Analogue from Streptomyces hygroscopicus, Molecules, 2010, 15, 1161–1167 http://dx.doi.org/10.3390/molecules15031161CrossrefGoogle Scholar

  • [73] Gorajana A., Venkatesan M., Vinjamuri S., Kurada B.V., Peela S., Jangam P., et al., Resistoflavine, cytotoxic compound from a marine actinomycete, Streptomyces chibaensis AUBN1/7, Microbiol Res., 2007, 162, 322–327 http://dx.doi.org/10.1016/j.micres.2006.01.012CrossrefGoogle Scholar

  • [74] Cho J.Y, Williams P.G., Kwon H.C., Jensen P.R., Fenical W., Lucentamycins A-D, cytotoxic peptides from the marine-derived actinomycete Nocardiopsis lucentensis, J. Nat. Prod., 2007, 70, 1321–1328 http://dx.doi.org/10.1021/np070101bCrossrefGoogle Scholar

  • [75] Hawas U.W., Shaaban M., Shaaban K.A., Speitling M., Maier A., Ketler G., et al., Mansouramycins A-D, cytotoxic isoquinolinequinones from marine streptomycete, J. Nat. Prod., 2009, 72, 2120–2124 http://dx.doi.org/10.1021/np900160gCrossrefGoogle Scholar

  • [76] Pérez M., Crespo C., Schleissner C., Rodríguez P., Zúñiga P., Reyes F., Tartrolon D, a cytotoxic macrodiolide from marine-derived actinomycete Streptomyces sp. MDG-04-17-069, J. Nat. Prod., 2009, 72, 2192–2194 http://dx.doi.org/10.1021/np9006603CrossrefGoogle Scholar

  • [77] Hohmann C., Schneider K., Brutner C., Irran E., Nicholson G., Bull A.T., et al., Carboxamycin, a new antibiotic of the benzoxazole family and phosphodiesterase inhibitor, produced by deep-sea strain Streptomyces sp, NTK 937, J Antibiot., 2009, 62, 99–104 http://dx.doi.org/10.1038/ja.2008.24Google Scholar

  • [78] Abdel-Mageed W.M., Milne B.F., Wagner M., Schumacher M., Sandor P., Pathom-aree W., Dermacozines, a new phenazine family from deep sea dermacocci isolated from Mariana Trench sediment, Org. Biomol. Chem., 2010, 8, 2352–2362 http://dx.doi.org/10.1039/c001445aCrossrefGoogle Scholar

  • [79] Fiedler H-P., Bruntner C., Riedlinger J., Bull A.T., Knutsen G., Goodfellow M., et al., Proximicins A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosipora, J. Antibiot., 2008, 61, 158–163 http://dx.doi.org/10.1038/ja.2008.125CrossrefGoogle Scholar

  • [80] Izumikawa M., Khan S.T., Komaki H., Takagi M., Shin-ya K., JBIR-31, a new teleocidin analog, produced by salt-requiring Streptomyces sp. NBRC 105896 isolated from a marine sponge, J. Antibiot., 2010, 63, 33–36 http://dx.doi.org/10.1038/ja.2009.113CrossrefGoogle Scholar

  • [81] Fujiwara T., Nagai A., Takagi M., Shin-ya K., JBIR-69, a new metabolite from Streptomyces sp. OG05, J. Antibiot., 2010, 63, 95–96 http://dx.doi.org/10.1038/ja.2009.132Google Scholar

  • [82] Motohashi K., Takagi M., Yamamura H., Hayakawa M., Shin-ya K., A new angucycline and a new butenolide isolated from lichen-derived Streptomyces spp., J.Antibiot., 2010, 63, 545–548 http://dx.doi.org/10.1038/ja.2010.94CrossrefGoogle Scholar

  • [83] Motohashi K., Takagi M., Shin-ya K., Tetracenoquinocin and 5-iminoaranciamycin from a Sponge-Derived Streptomyces sp. SP080513GE-26, J. Nat. Prod., 2010, 73, 755–758 http://dx.doi.org/10.1021/np9007409CrossrefGoogle Scholar

  • [84] Schneemann I., Kajahn I., Ohlendorf B., Zinecker H., Erhand A., Nagel K., et al., Mayamycin, a Cytotoxic Polyketide from Streptomyces Strain Isolated from Marine Sponge Halichondria Panicea. J. Nat. Prod., 2010, 73, 1309–1312 http://dx.doi.org/10.1021/np100135bCrossrefGoogle Scholar

  • [85] Trejo W.H., Bennett R.E., Streptomyces nodosus sp. N., the amphotericin - producing organism, J Bacteriol., 1963, 85, 436–439 Google Scholar

  • [86] Kimura K., Bugg T.D.H., Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis, Nat. Prod. Rep., 2003, 20, 252–273 http://dx.doi.org/10.1039/b202149hCrossrefGoogle Scholar

  • [87] Hector R.F., Compounds active against cell walls of medically important fungi, Clin. Microbiol. Rev., 1993, 6, 1–21 CrossrefGoogle Scholar

  • [88] Liao G., Li J., Li L., Yang H., Tian Y., Tan H., Selectively improving nikkomycin Z producton by blocking the imidazolone biosynthetic pathway of nikkomycin X and uracil feeding in Streptomyces ansochromogenes, Microb. Cell Fact., 2009, 8, 61 http://dx.doi.org/10.1186/1475-2859-8-61CrossrefGoogle Scholar

  • [89] Yang P.W., Li M.G., Zhao J.Y., Zhu M.Z., Shang H., Li J.R., et al., Oligomycins A and C, major secondary metabolites isolated from the newly isolated strain Streptomyces diastaticus, Folia Microbiol., 2010, 55, 10–16 http://dx.doi.org/10.1007/s12223-010-0002-0CrossrefGoogle Scholar

  • [90] Sehgal S.N., Baker H., Vézina C., Rapamycin (AY-22989), a new antifungal antibiotic.II Fermentation, isolation and characterization, J. Antibiot., 1975, 28, 727–733 http://dx.doi.org/10.7164/antibiotics.28.727Google Scholar

  • [91] Park S.R., Yoo Y.J., Ban Y.H., Yoon Y.J., Biosynthesis of rapamycin and its regulation: past achievements and recent progress, J. Antibiot., 2010, 63, 434–441 http://dx.doi.org/10.1038/ja.2010.71CrossrefGoogle Scholar

  • [92] Prapagdee B., Kuekulvong C., Mongkolsuk S., Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi, Int. J. Biol. Sci., 2008, 4, 330–337 http://dx.doi.org/10.7150/ijbs.4.330CrossrefGoogle Scholar

  • [93] Taechowisan T., Chunhua L., Shen Y., Lumyong S., Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity, Microbiol., 2005, 151, 1691–1695 http://dx.doi.org/10.1099/mic.0.27758-0CrossrefGoogle Scholar

  • [94] Schleger R., Thrum H., Zielinski J., Borowski E.J., The structure of roflamycin. A new polyene macrolide antifungal antibiotic., J.Antibiot., 1981, 34, 122–123 http://dx.doi.org/10.7164/antibiotics.34.122CrossrefGoogle Scholar

  • [95] Wu X., Huang H., Chen G., Sun Q., Peng J., Zhu J., et al., A novel antibiotic produced by Streptomyces noursei Da07210, Antonie van Leeuwenhoek, 2009, 96, 109–112 http://dx.doi.org/10.1007/s10482-009-9333-8CrossrefGoogle Scholar

  • [96] Kavitha A., Prabhakar P., Vijayalakshmi M., Venkateswarlu Y., Purification and biological evaluation of the metabolites produced by Streptomyces sp TK-VL_333., Res. Microbiol., 2010, 161, 335–345 http://dx.doi.org/10.1016/j.resmic.2010.03.011Google Scholar

  • [97] Mishima H., Ide J., Muramatsu S., Ono M, Milbemycins, a new family of macrolide antibiotics. Structure determination of milbemycins D,E,F,G,H,J and K., J.Antibiotics, 1983, 36, 980–990 http://dx.doi.org/10.7164/antibiotics.36.980CrossrefGoogle Scholar

  • [98] Hotson I.K., The avermectins: A new family of antiparasitic agents, J. S. Afr. Vet. Assoc., 1982, 53, 87–90 Google Scholar

  • [99] Sun Y., Zhou X., Tu G., Deng Z., Identification of a gene cluster encoding meilingmycin biosynthesis among multiple polyketide synthase contigs isolated from Streptomyces nanchangensis NS3226., Arch. Microbiol., 2003, 180, 101–107 http://dx.doi.org/10.1007/s00203-003-0564-1CrossrefGoogle Scholar

  • [100] Pimentel-Elardo S.M., Buback V., Gulder T.A.M., Bugni T.S., Reppart J., Bringmann G., New Tetromycin Derivatives with Anti-Trypanosomal and Protease Inhibitory Activities, Mar. Drugs, 2011, 9, 1682–1697 http://dx.doi.org/10.3390/md9101682CrossrefGoogle Scholar

  • [101] Niitsuma M., Hashida J., Iwatsuki M., Mori M., Ishiyama A., Namatame M., et al., Sinefungin VA and dehydrosinefungin V, new antitrypanosomal antibiotics produced by Streptomyces sp. K05-0178, J. Antibiot., 2010, 63, 673–679 http://dx.doi.org/10.1038/ja.2010.102CrossrefGoogle Scholar

  • [102] Takatsuki A., Tamura G., Tunicamycin a new antibiotic. II Some biological properties of the antiviral activity of tunicamycin, J. Antibiot., 1971, 24, 224–231 http://dx.doi.org/10.7164/antibiotics.24.224CrossrefGoogle Scholar

  • [103] Takagi M., Motohashi K., Nagai A., Izumikawa M., Tanaka M., Fuse S., et al., Anti-influenza virus compound from Streptomyces sp. RI18, Org. Lett., 2010, 12, 4664–4646 http://dx.doi.org/10.1021/ol102007dCrossrefGoogle Scholar

  • [104] Wehmeier U.F, Piepersberg W., Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose, Appl Microbiol Biotechnol., 2004, 63, 613–25 http://dx.doi.org/10.1007/s00253-003-1477-2CrossrefGoogle Scholar

  • [105] Weibel E. K., Hadvary P., Hochuli E., Kupfer E., Lengsfeld H., Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. Producing organism, Fermentation, Isolation and Biological Activity, J. Antibiot., 1987, 8, 1081–1085 http://dx.doi.org/10.7164/antibiotics.40.1081CrossrefGoogle Scholar

  • [106] Aggarwala D., Fernandez M. L., Solimanb G.A., Rapamycin, an mTOR inhibitor, disrupts triglyceride metabolism in guinea pigs, Metabolism, 2006, 55, 794–802 http://dx.doi.org/10.1016/j.metabol.2006.01.017CrossrefGoogle Scholar

  • [107] Kino T., Hatanaka, H., Hashimoto, M., Nishiyama, M., Goto, T., Okuhara, et al., FK-506, a novel immunosuppressant isolated from a Streptomyces. Fermentation, isolation, and physiochemical and biological characteristics, J. Antibiot., 1987, 40, 1249–1255 http://dx.doi.org/10.7164/antibiotics.40.1249CrossrefGoogle Scholar

  • [108] Kirst H.A., The spinosyn family of insecticides: realizing the potential of natural product research., J. Antibiot., 2010, 63, 101–111 http://dx.doi.org/10.1038/ja.2010.5CrossrefGoogle Scholar

  • [109] Hayakaa M., Yamamura H., Nakagawa Y., Kawa Y., Hayashi Y., Misonou T., et al., Taxonomic diversity of Actinomycetes Isolated from Swine Manure Compost, Actinomycetologica, 2010, 24, 58–62 http://dx.doi.org/10.3209/saj.SAJ240202CrossrefGoogle Scholar

  • [110] Zhang J., Marcin C., Shifflet M.A., Salmon P., Brix T., Greasham R., et al., Development of a defined medium fermentation process for physostigmine production by Streptomyces griseofuscus, Appl. Microbiol. Biotechnol., 1996, 44, 568–575 http://dx.doi.org/10.1007/BF00172487CrossrefGoogle Scholar

  • [111] Hayakawa Y., Yamazaki Y., Kurita M., Kawasaki T., Takagi M., Shin-ya K., Flaviogeranin, a new neuroprotective compound from Streptomyces sp, J. Antibiot., 2010, 63, 379–380 http://dx.doi.org/10.1038/ja.2010.49CrossrefGoogle Scholar

  • [112] Motohashi K., Toda T., Sue M., Furihata K., Shizuri Y., Matsuo Y., et al., Isolation and structure elucidation of tumescenamides A and B, two peptides produced by Streptomyces tumescens Ym23-260, J. Antibiot., 2010, 63, 549–552 http://dx.doi.org/10.1038/ja.2010.73CrossrefGoogle Scholar

  • [113] Baltz R. H., Antimicrobials from Actinomycetes: Back to the Future, Microbe, 2007, 2, 125–131 Google Scholar

About the article

Published Online: 2012-04-03

Published in Print: 2012-06-01


Citation Information: Open Life Sciences, Volume 7, Issue 3, Pages 373–390, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-012-0036-1.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Daniela Tizabi, Ana Sosa, Tsvetan Bachvaroff, Russell T. Hill, and Frank J. Stewart
Microbiology Resource Announcements, 2019, Volume 8, Number 34
[2]
Yitayal Shiferaw Anteneh and Christopher Milton Mathew Franco
Frontiers in Microbiology, 2019, Volume 10
[3]
Samira R. Mansour, Ahmed M. Abdel-Azeem, and Samy Salem Soliman Abo-Deraz
F1000Research, 2015, Volume 4, Page 11
[4]
Hui Tian, Jamil Shafi, Mingshan Ji, Yuhui Bi, and Zhiguo Yu
Journal of Natural Products, 2017, Volume 80, Number 4, Page 1015
[5]
Sandrine M. A. Lima, Janaína. G. S. Melo, Gardênia C. G. Militão, Gláucia M. S. Lima, Maria do Carmo A. Lima, Jaciana S. Aguiar, Renata M. Araújo, Raimundo Braz-Filho, Pascal Marchand, Janete M. Araújo, and Teresinha G. Silva
Applied Microbiology and Biotechnology, 2017, Volume 101, Number 2, Page 711
[6]
Shan Lu, Shinichi Nishimura, Masashi Ito, Toshio Tsuchida, and Hideaki Kakeya
Journal of Natural Products, 2016, Volume 79, Number 7, Page 1891
[7]
Iva Tomova, Margarita Stoilova-Disheva, Irina Lazarkevich, and Evgenia Vasileva-Tonkova
Frontiers in Life Science, 2015, Volume 8, Number 4, Page 348
[8]
A. Yekkour, A. Meklat, C. Bijani, O. Toumatia, R. Errakhi, A. Lebrihi, F. Mathieu, A. Zitouni, and N. Sabaou
Letters in Applied Microbiology, 2015, Volume 60, Number 6, Page 589
[9]
Kohji Ishihara, Aiko Fujita, Akane Sakiyama, Yuko Kobayashi, Kaoru Hori, Kanako Maruike, Noriyoshi Masuoka, Nobuyoshi Nakajima, and Hiroki Hamada
Open Journal of Applied Sciences, 2013, Volume 03, Number 01, Page 116
[10]
Soraia El Baz, Mohamed Baz, Mustapha Barakate, Lahcen Hassani, Abdelhay El Gharmali, and Boujamâa Imziln
The Scientific World Journal, 2015, Volume 2015, Page 1
[11]
Supattra Muangham, Wasu Pathom-aree, and Kannika Duangmal
Canadian Journal of Microbiology, 2015, Volume 61, Number 2, Page 164
[12]
Leonardo José Silva, Eduardo José Crevelin, Wallace Rafael Souza, Luiz Alberto Beraldo Moraes, Itamar Soares Melo, and Tiago Domingues Zucchi
Phytopathology, 2014, Volume 104, Number 12, Page 1298
[13]
Omrane Toumatia, Amine Yekkour, Yacine Goudjal, Amar Riba, Yannick Coppel, Florence Mathieu, Nasserdine Sabaou, and Abdelghani Zitouni
Journal of Basic Microbiology, 2015, Volume 55, Number 2, Page 221
[14]
Aminata Nacoulma, Olivier Vandeputte, Manuella De Lorenzi, Mondher Jaziri, and Pierre Duez
International Journal of Molecular Sciences, 2013, Volume 14, Number 6, Page 12533
[15]
Sabrina Koehler and Martin Kaltenpoth
Journal of Chemical Ecology, 2013, Volume 39, Number 7, Page 978
[16]
Elisabeth Stes, Isolde Francis, Ine Pertry, Alicja Dolzblasz, Stephen Depuydt, and Danny Vereecke
FEMS Microbiology Letters, 2013, Volume 342, Number 2, Page 187
[17]
Sabrina Koehler, Jan Doubský, and Martin Kaltenpoth
Frontiers in Zoology, 2013, Volume 10, Number 1, Page 3

Comments (0)

Please log in or register to comment.
Log in