Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 7, Issue 4


Volume 10 (2015)

Effect of acute heat stress on rat adrenal medulla — a morphological and ultrastructural study

Dragana Petrovic-Kosanovic
  • Institute of Zoology, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
  • Centre for Electron Microscopy, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maja Milosevic
  • Institute of Zoology, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
  • Centre for Electron Microscopy, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mirela Budec / Vesna Koko
  • Institute of Zoology, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
  • Centre for Electron Microscopy, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
  • Institute for Medical Research, 11000, Belgrade, Serbia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-06-03 | DOI: https://doi.org/10.2478/s11535-012-0044-1


Isolated rat adrenal medulla was analyzed by light and electron microscope after an acute (60 min) exposure to high ambient temperature (38°C). Under these conditions there was a significant rise in plasma adrenaline and noradrenaline. Stereological investigation by light microscopy showed a significant decrease in volume density of cells and an increase in the interstitium. At the ultrastructural level, the profile area of cells, nuclei and cytoplasm of adrenaline cells were significantly decreased. After the heat stress numbers of resting granules in adre naline and noradrenaline cells were significantly reduced, while the numbers of altered granules and empty containers in both types of adrenomedullar cells were significantly increased.

Keywords: Rat; Heat stress; Ultrastructure; Adrenaline cells; Noradrenaline cells

  • [1] Diaz-Flores L., Gutierrez R., Varela H., Valladares F., Alvarez-Arguelles H., Borges R., Histogenesis and morphofunctional characteristics of chromaffin cells, Acta Physiol., 2008, 192, 145–163 http://dx.doi.org/10.1111/j.1748-1716.2007.01811.xCrossrefGoogle Scholar

  • [2] Koko V., Djordjevic J., Cvijic G., Davidovic V., Effect of acute heat stress on rat adrenal glands: a morphological and stereological study, J. Exp. Biol., 2004, 207, 4225–4230 http://dx.doi.org/10.1242/jeb.01280CrossrefGoogle Scholar

  • [3] Souvatzoglou A., The Sympathoadrenal System: Integrative Regulation of the Cortical and the Medullary Adrenal Functions, In: Linos D., van Heerden J.A. (Eds.), Adrenal Glands: Diagnostic apsects and surgical therapy, Springer-Verlag, Berlin, 2005 Google Scholar

  • [4] Tomlinson A., Coupland R.E., The innervation of the adrenal gland. IV. Innervation of the rat adrenal medulla from birth to old age. A descriptive and quantitative morphometric and biochemical study of the innervation of chromaffin cells and adrenal medullary neurons in Wistar rats, J. Anat., 1990, 169, 209–236 Google Scholar

  • [5] Kvetnansky R., Sabban E.L., Palkovits M., Catecholaminergic systems in stress: structural and molecular genetic approaches, Physiol. Rev., 2009, 89, 535–606 http://dx.doi.org/10.1152/physrev.00042.2006CrossrefGoogle Scholar

  • [6] Collins K.J., Weiner J.S., Endocrinological aspects of exposure to high environmental temperatures, Physiol. Rev., 1968, 48, 785–839 Google Scholar

  • [7] Fukuhara K., Kvetnansky R., Weise V.K., Ohara H., Yoneda R., Goldstein D.S., et al., Effects of continuous and intermittent cold (SART) stress on sympathoadrenal system activity in rats, J. Neuroendocrinol., 1996, 8, 65–72 http://dx.doi.org/10.1111/j.1365-2826.1996.tb00687.xCrossrefGoogle Scholar

  • [8] Gundersen H.J.G., The nucleator, J. Microsc., 1988, 151, 3–21 http://dx.doi.org/10.1111/j.1365-2818.1988.tb04609.xCrossrefGoogle Scholar

  • [9] Bini G., Hagbarth K.E., Hynninen P., Wallin B.G., Regional similarities and differences in thermoregulatory vaso- and sudomotor tone, J. Physiol., 1980, 306, 553–565 Google Scholar

  • [10] Massett M.P., Johnson D.G., Kregel K.C., Cardiovascular and sympathoadrenal responses to heat stress following water deprivation in rats, Am. J. Physiol., 1996, 270, R652–659 Google Scholar

  • [11] Powers S.K., Howley E.T., Cox R., A differential catecholamine response during prolonged exercise and passive heating, Med. Sci. Sports Exerc., 1982, 14, 435–439 http://dx.doi.org/10.1249/00005768-198206000-00005CrossrefGoogle Scholar

  • [12] Brenner I.K., Zamecnik J., Shek P.N., Shephard R.J., The impact of heat exposure and repeated exercise on circulating stress hormones, Eur J Appl Physiol Occup Physiol, 1997, 76, 445–454 http://dx.doi.org/10.1007/s004210050274CrossrefGoogle Scholar

  • [13] Barrand M.A., Dauncey M.J., Ingram D.L., Changes in plasma noradrenaline and adrenaline associated with central and peripheral thermal stimuli in the pig, J. Physiol., 1981, 316, 139–152 Google Scholar

  • [14] Robertshaw D., Whittow G.C., The effect of hyperthermia and localized heating of the anterior hypothalamus on the sympatho-adrenal system of the ox (Bos taurus), J. Physiol., 1966, 187, 351–360 Google Scholar

  • [15] Cure M., Plasma corticosterone response in continuous versus discontinuous chronic heat exposure in rat, Physiology & Behavior, 1989, 45, 1117–1122 http://dx.doi.org/10.1016/0031-9384(89)90097-8CrossrefGoogle Scholar

  • [16] Vlad M., Ionescu N., Ispas A.T., Giuvarasteanu I., Ungureanu E., Stoica C., Morphological changes during acute experimental short-term hyperthermia, Rom. J. Morphol. Embryol., 2010, 51, 739–744 Google Scholar

  • [17] Koldysheva E.V., Lushnikova E.L., Ultrastructural reorganization of rat adrenal cortex after whole body hyperthermia, Bull. Exp. Biol. Med., 2008, 145, 650–655 http://dx.doi.org/10.1007/s10517-008-0160-0CrossrefGoogle Scholar

  • [18] Koko V., Djordjevic J., Cvijic G., Davidovic V., Effect of the acute heat stress on the rat pituitary gland. Morphological and stereological study, J. Therm. Biol., 2006, 31, 394–399 http://dx.doi.org/10.1016/j.jtherbio.2006.01.009CrossrefGoogle Scholar

  • [19] Weibel E.R., Kistler G.S., Scherle W.F., Practical stereological methods for morphometric cytology, J. Cell Biol., 1966, 30, 23–38 http://dx.doi.org/10.1083/jcb.30.1.23CrossrefGoogle Scholar

  • [20] Folkow B., Von Euler U.S., Selective activation of noradrenaline and adrenaline producing cells in the cat’s adrenal gland by hypothalamic stimulation, Circ. Res., 1954, 2, 191–195 CrossrefGoogle Scholar

  • [21] Aherne W.A., Dunnill M.S., (Eds.), Morphometry, Edward Arnold Ltd., London, 1982 Google Scholar

  • [22] Coupland R.E., Pyper A.S., Hopwood D., A Method for Differentiating between Noradrenaline- and Adrenaline-storing Cells in the Light and Electron Microscope, Nature, 1964, 201, 1240–1242 http://dx.doi.org/10.1038/2011240b0CrossrefGoogle Scholar

  • [23] Kobayashi S., Coupland R.E., Morphological aspects of chromaffin tissue: the differential fixation of adrenaline and noradrenaline, J. Anat., 1993, 183, 223–235 Google Scholar

  • [24] Jezova D., Kvetnansky R., Vigas M., Sex differences in endocrine response to hyperthermia in sauna, Acta Physiol. Scand., 1994, 150, 293–298 http://dx.doi.org/10.1111/j.1748-1716.1994.tb09689.xCrossrefGoogle Scholar

  • [25] Crivellato E., Nico B., Mallardi F., Beltrami C.A., Ribatti D., Piecemeal degranulation as a general secretory mechanism?, Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 2003, 274, 778–784 http://dx.doi.org/10.1002/ar.a.10095CrossrefGoogle Scholar

  • [26] Crivellato E., Belloni A., Nico B., Nussdorfer G.G., Ribatti D., In vivo administered reserpine increases piecemeal degranulation in rat adrenal chromaffin cells, Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 2006, 288, 286–291 Google Scholar

  • [27] Moller N., Beckwith R., Butler P.C., Christensen N.J., Orskov H., Alberti K.G., Metabolic and hormonal responses to exogenous hyperthermia in man, Clin. Endocrinol. (Oxf.), 1989, 30, 651–660 http://dx.doi.org/10.1111/j.1365-2265.1989.tb00271.xCrossrefGoogle Scholar

  • [28] Sriramachari S., Heat hyperpyrexia: time to act, Indian J. Med. Res., 2004, 119, 7–10 Google Scholar

  • [29] Vaha-Eskeli K.K., Erkkola R.U., Scheinin M., Seppanen A., Effects of short-term thermal stress on plasma catecholamine concentrations and plasma renin activity in pregnant and nonpregnant women, Am. J. Obstet. Gynecol., 1992, 167, 785–789 Google Scholar

  • [30] Axelrod J., Purification and properties of phenylethanolamine-N-methyl transferase, J. Biol. Chem., 1962, 237, 1657–1660 Google Scholar

  • [31] Sabban E.L., Catecholamines in stress: molecular mechanisms of gene expression, Endocr. Regul., 2007, 41, 61–73 Google Scholar

  • [32] Wurtman R.J., Stress and the adrenocortical control of epinephrine synthesis, Metabolism., 2002, 51, 11–14 http://dx.doi.org/10.1053/meta.2002.33185CrossrefGoogle Scholar

  • [33] Gisolfi C.V., Matthes R.D., Kregel K.C., Oppliger R., Splanchnic sympathetic nerve activity and circulating catecholamines in the hyperthermic rat, J. Appl. Physiol., 1991, 70, 1821–1826 Google Scholar

  • [34] Kvetnansky R., Pacak K., Sabban E.L., Kopin I.J., Goldstein D.S., Stressor specificity of peripheral catecholaminergic activation, Adv. Pharmacol., 1998, 42, 556–560 http://dx.doi.org/10.1016/S1054-3589(08)60811-XCrossrefGoogle Scholar

  • [35] Francesconi R.P., Endocrinological responses to exercise in stressful environments, Exerc. Sport Sci. Rev., 1988, 16, 255–284 http://dx.doi.org/10.1249/00003677-198800160-00011CrossrefGoogle Scholar

  • [36] Yokotani K., Okada S., Nakamura K., Yamaguchi-Shima N., Shimizu T., Arai J., et al., Brain prostanoid TP receptor-mediated adrenal noradrenaline secretion and EP3 receptor-mediated sympathetic noradrenaline release in rats, Eur. J. Pharmacol., 2005, 512, 29–35 http://dx.doi.org/10.1016/j.ejphar.2005.02.027CrossrefGoogle Scholar

  • [37] Pugachev M.K., Changes in the dimensions of cells and their nuclei in the adrenal medullary substance of white rats during acute overheating, Tsitologiia, 1980, 22, 1368–1371 Google Scholar

  • [38] Van de Kar L.D., Blair M.L., Forebrain pathways mediating stress-induced hormone secretion, Front. Neuroendocrinol., 1999, 20, 1–48 http://dx.doi.org/10.1006/frne.1998.0172CrossrefGoogle Scholar

  • [39] Kvetnansky R., Sun C.L., Lake C.R., Thoa N., Torda T., Kopin I.J., Effect of handling and forced immobilization on rat plasma levels of epinephrine, norepinephrine, and dopamine-beta-hydroxylase, Endocrinology, 1978, 103, 1868–1874 http://dx.doi.org/10.1210/endo-103-5-1868CrossrefGoogle Scholar

About the article

Published Online: 2012-06-03

Published in Print: 2012-08-01

Citation Information: Open Life Sciences, Volume 7, Issue 4, Pages 603–610, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-012-0044-1.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in