Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 7, Issue 4

Issues

Volume 10 (2015)

Gene expression and activity analysis of the first thermophilic U32 peptidase

Andrius Jasilionis / Algirdas Kaupinis / Marija Ger / Mindaugas Valius / Donaldas Chitavichius / Nomeda Kuisiene
Published Online: 2012-06-03 | DOI: https://doi.org/10.2478/s11535-012-0047-y

Abstract

Peptidase family U32 is one of the few whose catalytic type and structure has not yet been described. It is generally accepted that U32 peptidases represent putative collagenases and contribute to the pathogenicity of some bacteria. Meanwhile, U32 peptidases are also found in nonpathogenic bacteria including thermophiles and hyperthermophiles. Here we report cloning of the U32.002 peptidase gene from thermophilic Geobacillus thermoleovorans DSM 15325 and demonstrate expression and characterization of the recombinant protein. It has been determined that U32.002 peptidase is constitutively expressed in the cells of thermophilic G. thermoleovorans DSM 15325. The recombinant oligomeric enzyme showed its activity only against heat-treated collagen. It was unable to degrade albumin, casein, elastin, gelatine and keratin. In contrast to this, the monomeric recombinant protein showed no activity at all. This paper is the first report about the thermophilic U32 peptidase. As the thermophilic bacteria are non-pathogenic, the role of constitutively expressed extracellular collagenolytic U32 peptidase in these bacteria is unclear.

Keywords: Constitutive expression; Collagenolytic activity; Thermophilic collagenase; Geobacillus thermoleovorans; Geobacillus lituanicus

  • [1] Rawlings N.D., Barrett A.J., Bateman A., MEROPS: the peptidase database, Nucleic Acids Res., 2010, 38, D227–D233 http://dx.doi.org/10.1093/nar/gkp971CrossrefGoogle Scholar

  • [2] Kato T., Takahashi N., Kuramitsu H.K., Sequence analysis and characterization of the Porphyromonas gingivalis prtC gene, which expresses a novel collagenase activity, J. Bacteriol., 1992, 174, 3889–3895 Google Scholar

  • [3] Zhao H., Li X., Johnson D.E., Mobley H.L.T., Identification of protease and rpoN-associated genes of uropathogenic Proteus mirabilis by negative selection in a mouse model of ascending urinary tract infection, Microbiology, 1999, 145, 185–195 http://dx.doi.org/10.1099/13500872-145-1-185CrossrefGoogle Scholar

  • [4] Kavermann H., Burns B.P., Angermüller K., Odenbreit S., Fischer W., Melchers K., et al., Identification and characterization of Helicobacter pylori genes essential for gastric colonization, J. Exp. Med., 2003, 197, 813–822 http://dx.doi.org/10.1084/jem.20021531CrossrefGoogle Scholar

  • [5] Carlson S.A., McCuddin Z.P., Wu M.T., SlyA regulates the collagenase-mediated cytopathic phenotype in multiresistant Salmonella, Microb. Pathog., 2005, 38, 181–187 http://dx.doi.org/10.1016/j.micpath.2005.01.004CrossrefGoogle Scholar

  • [6] Han H.-J., Taki T., Kondo H., Hirono I., Aoki T., Pathogenic potential of a collagenase gene from Aeromonas veronii, Can. J. Microbiol., 2008, 54, 1–10 http://dx.doi.org/10.1139/W07-109CrossrefGoogle Scholar

  • [7] Xiong N., Brewer M.T., Anderson K.L., Weeks K.E., Carlson S.A., Expression of a collagenase that enables blodd-brain barrier penetration for Salmonella implicated in bovine encephalopathies, Microb. Pathog., 2011, 51, 230–232 http://dx.doi.org/10.1016/j.micpath.2011.04.008CrossrefGoogle Scholar

  • [8] Lamont R.J., Jenkinson H.F., Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis, Microbiol. Mol. Biol. Rev., 1998, 62, 1244–1263 Google Scholar

  • [9] Wittstock M., Schmidt H., Flemmig T.F., Karch H., Heterogeneity of the prtC gene of Porphyromonas gingivalis, Oral Microbiol. Immunol., 2000, 15, 33–39 http://dx.doi.org/10.1034/j.1399-302x.2000.150106.xCrossrefGoogle Scholar

  • [10] Houle M.-A., Grenier D., Plamondon P., Nakayama K., The collagenase activity of Porphyromonas gingivalis is due to Arg-gingipain, FEMS Microbiol. Lett., 2003, 221, 181–185 http://dx.doi.org/10.1016/S0378-1097(03)00178-2CrossrefGoogle Scholar

  • [11] Watanabe K., Collagenolytic proteases from bacteria, Appl. Microbiol. Biotechnol., 2004, 63, 520–526 http://dx.doi.org/10.1007/s00253-003-1442-0CrossrefGoogle Scholar

  • [12] Leikina E., Mertts M.V., Kuznetsova N., Leikin S., Type I collagen is thermally unstable at body temperature, Proc. Natl. Acad. Sci. USA, 2002, 99, 1314–1318 http://dx.doi.org/10.1073/pnas.032307099CrossrefGoogle Scholar

  • [13] Dinsdale A.E., Halket G., Coorevits A., Van Landschoot A., Busse H.-J., De Vos P., et al., Emended descriptions of Geobacillus thermoleovorans and Geobacillus thermocatenulatus, Int. J. Syst. Evol. Microbiol., 2011, 61, 1802–1810 http://dx.doi.org/10.1099/ijs.0.025445-0CrossrefGoogle Scholar

  • [14] Leejeerajumnean A., Ames J.M., Owens J.D., Effect of ammonia on the growth of Bacillus species and some other bacteria, Lett. Appl. Microbiol., 2000, 30, 385–389 http://dx.doi.org/10.1046/j.1472-765x.2000.00734.xCrossrefGoogle Scholar

  • [15] Tamura K., Dudley J., Nei M., Kumar S., MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0, Mol. Biol. Evol., 2007, 24, 1596–1599 http://dx.doi.org/10.1093/molbev/msm092Google Scholar

  • [16] Laemmli U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, 227, 680–685 http://dx.doi.org/10.1038/227680a0CrossrefGoogle Scholar

  • [17] Hellman U., Wernstedt C., Gonez J., Heldin C.H., Improvement of an “in-gel” digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing, Anal. Biochem., 1995, 224, 451–455 http://dx.doi.org/10.1006/abio.1995.1070CrossrefGoogle Scholar

  • [18] Anderson L., Hunter C.H., Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins, Mol. Cell. Proteomics, 2006, 5, 573–588 Google Scholar

  • [19] Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, 72, 248–254 http://dx.doi.org/10.1016/0003-2697(76)90527-3CrossrefGoogle Scholar

  • [20] Gogly B., Groult N., Hornebeck W., Godeau G., Pellat B., Collagen zymography as a sensitive and specific technique for the determination of subpicogram levels of interstitial collagenase, Anal. Biochem., 1998, 255, 211–216 http://dx.doi.org/10.1006/abio.1997.2318CrossrefGoogle Scholar

  • [21] Kuisiene N., Raugalas J., Chitavichius D., Geobacillus lituanicus sp. nov., Int. J. Syst. Evol. Microbiol., 2004, 54, 1991–1995 http://dx.doi.org/10.1099/ijs.0.02976-0CrossrefGoogle Scholar

  • [22] Rawlings N.D., Barrett A.J., Classification of peptidases by comparisons of primary and tertiary structures, In: Hopsu-Havu V.K., Järvinen M., Kirschke H. (Eds), Proteolysis in cell functions, IOS Press, Amsterdam, 1997 Google Scholar

  • [23] Lee J.-H., Ahn S.-H., Lee E.-M., Jeong S.-H., Kim Y.-O., Lee S.-J., et al., The FAXWXXT motif in the carboxyl terminus of Vibrio mimicus metalloprotease is involved in binding to collagen, FEBS Lett., 2005, 579, 2507–2513 http://dx.doi.org/10.1016/j.febslet.2005.03.062CrossrefGoogle Scholar

  • [24] Navarre W.W., Schneewind O., Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope, Microbiol. Mol. Biol. Rev., 1999, 63, 174–229 Google Scholar

  • [25] Yang C.-K., Ewis H.E., Zhang X.Z., Lu C.-D., Hu H.-J., Pan Y., et al., Nonclassical protein secretion by Bacillus subtilis in the stationary phase is not due to cell lysis, J. Bacteriol., 2011, 193, 5607–5615 http://dx.doi.org/10.1128/JB.05897-11CrossrefGoogle Scholar

About the article

Published Online: 2012-06-03

Published in Print: 2012-08-01


Citation Information: Open Life Sciences, Volume 7, Issue 4, Pages 587–595, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-012-0047-y.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in