Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 7, Issue 4

Issues

Volume 10 (2015)

Population genetics of the hazel hen Bonasa bonasia in Poland assessed with non-invasive samples

Robert Rutkowski / Marek Keller
  • Department of Forest Zoology and Game Management, Faculty of Forestry, Warsaw University of Agriculture, 02-776, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patrycja Jagołkowska
Published Online: 2012-06-03 | DOI: https://doi.org/10.2478/s11535-012-0051-2

Abstract

Despite a severe decrease in the number of hazel hens during the 20th century, nowadays this grouse species is rather common in the forests of Northeastern and Southern Poland. We used mitochondrial control region and microsatellite markers to examine the genetic variability of Polish populations of hazel hens. We used non-invasively collected faeces to estimate genetic variability within populations, genetic differentiation among populations as well as genetic differentiation between two regions inhabited by two different subspecies of hazel hens. Our results confirm the usefulness of DNA from faeces to obtain reliable information on the population genetics of hazel hens. We found a rather high level of genetic variability in the Polish population. Genetic variability was higher in birds from continuous forests in the South of the country than in birds from fragmented habitats in the Northeast. Genetic differentiation was higher among subpopulations from Northeastern Poland. Additionally, both classes of molecular markers suggested the presence of two distinct genetic groups of birds, corresponding to previously described subspecies. We conclude that the genetic variability of the Polish hazel hen population has been influenced by habitat fragmentation and the history of the population during its post-glacial colonization of Poland from different glacial refugia.

Keywords: Hazel hen; Bonasa bonasia; Cross-species amplification; Microsatellites; Non-invasive sampling; Genetic differentiation

  • [1] Cramp S., Simmons K.E.L., (Eds.), Handbook of the Birds of Europe, the Middle East, and North Africa: The Birds of the Western Palearctic, Volume II, Hawks to Bustards, Oxford University Press, 1980 Google Scholar

  • [2] Bergmann H.-H., Klaus S., Distribution, status and limiting factors of hazel grouse in central Europe, particularly in Germany, Gibier Faune Sauvage, 1994, 11, 5–32 Google Scholar

  • [3] Bergmann H.-H., Klaus S., Műller F., Scherzinger W., Swenson J.E., Wiesner J., Hazel hen [Die Haselhűhner], Westarp Wissenschaften, Magdeburg, Germany, 1996, (in German) Google Scholar

  • [4] Różycki A.Ł, Keller M., Buczek T., Numbers and habitat preferences of the Hazel Grouse Bonasa bonasia in the Lasy Parczewskie forest [Liczebność i preferencje siedliskowe jarząbka Bonasa bonasia w Lasach Parczewskich], Notatki Ornitologiczne, 2007, 48, 151–162, (in Polish) Google Scholar

  • [5] Tomiałojć L., Stawarczyk T., The avifauna of Poland. Distribution, numbers and trends [Awifauna Polski. Rozmieszczenie, liczebność i zmiany], Wrocław, 2003 (in Polish) Google Scholar

  • [6] Bonczar Z., Hazel Hen Bonasa bonasia [Jarząbek Bonasa bonasia], In: Sikora A., Rohde Z., Gromadzki M., Neubauer G., Chylarecki P. (Eds.), The atlas of breeding birds in Poland 1985–2004 [Atlas rozmieszczenia ptaków lęgowych Polski 1985–2004], Bogucki Wydawnictwo Naukowe, Poznań, 2007, (in Polish) Google Scholar

  • [7] Johansen H., The avifauna of Western Siberia - Otides to Gallus [Die Vogelfauna Westsibiriens - Otides bis Gallus], J. Ornitol., 1961, 102, 237–269 (in German) http://dx.doi.org/10.1007/BF01671653CrossrefGoogle Scholar

  • [8] Glutz von Blotzheim U.N., Bauer K., Bezzel E., Handbook of the birds of Central Europe [Handbuch der Vögel Mitteleuropas], Vol. 5, Galliformes und Gruiformes, 2nd ed., Aula-Verlag, Wiesbaden, 1994 (in German) Google Scholar

  • [9] de Juana E., Family Tetraonidae, In: del Hoyo J., Elliott A., Sargatal J. (Eds.), Handbook of the Birds of the World, Volume 2, New World Vultures to Guineafowl, Lynx Edicions, Barcelona, 1994 Google Scholar

  • [10] Dementev G.P, Gladkov N.A. (Eds.), Birds of USSR [Pticy Sovetskovo Sojuza], Sovetskaja Nauka, Moskva, 1951 (in Russian) Google Scholar

  • [11] Storch I., Status Survey and Conservation Action Plan 2000–2004: Grouse, IUCN, Gland, Switzerland and Cambridge, UK and World Pheasant Association, Reading, UK, 2000 Google Scholar

  • [12] Baba Y., Fujimaki Y., Klaus S., Butorina O., Drovetski S., Koike H., Molecular population phylogeny of Hazel Grouse Bonasa bonasia in East Asia inferred from mitochondrial control-region sequences, Wildlife Biol., 2002, 8, 251–259 Google Scholar

  • [13] Baba Y., Klaus S., Sun Y-H., Fujimaki Y. Molecular phylogeny and population history of the Chinese grouse and the hazel grouse, Bulletin of the Graduate School of Social and Cultural Studies, Kyushu University, 2005, 11, 77–82. Google Scholar

  • [14] Sahlsten J., Thorngren H., Hoglund J., Inference of Hazel Grouse population structure using multilocus data: a landscape genetic approach, Heredity, 2008, 101, 475–482 http://dx.doi.org/10.1038/hdy.2008.94CrossrefGoogle Scholar

  • [15] Swenson J.E., Social organization of hazel grouse and ecological factors influencing it, PhD thesis, University of Alberta, Edmonton, USA, 1991 Google Scholar

  • [16] Segelbacher G., Steinbrück G., Bird faeces for sex identification and microsatellite analysis, Vogelwarte, 2001, 41, 139–142 Google Scholar

  • [17] Idaghdour Y., Broderick D., Korrida A., Faeces as a source of DNA for molecular studies in a threatened population of great bustards, Conserv. Genet., 2003, 4, 789–792 http://dx.doi.org/10.1023/B:COGE.0000006110.03529.95CrossrefGoogle Scholar

  • [18] Beja-Pereira A., Oliveira R., Alves P.C., Schwartz M.K., Luikart G., Advancing ecological understandings through technological transformations in noninvasive genetics, Mol. Ecol. Resou., 2009, 9, 1279–1301 http://dx.doi.org/10.1111/j.1755-0998.2009.02699.xCrossrefGoogle Scholar

  • [19] Taberlet P., Griffin S., Goossens B., Questiau S., Manceau V., Escaravage N., et al., Reliable genotyping of samples with very low DNA quantities using PCR, Nucleic Acids Res., 1996, 24, 3189–3194 http://dx.doi.org/10.1093/nar/24.16.3189CrossrefGoogle Scholar

  • [20] Taberlet P., Waits L.P., Luikart G., Noninvasive genetic sampling: look before you leap, Trends Ecol. Evolut., 1999, 14, 323–327 http://dx.doi.org/10.1016/S0169-5347(99)01637-7CrossrefGoogle Scholar

  • [21] Bellemain E., Taberlet P., Improved non invasive genotyping method: application to brown bear (Ursus arctos) faeces, Mol. Ecol. Notes, 2004, 4, 519–522 http://dx.doi.org/10.1111/j.1471-8286.2004.00711.xCrossrefGoogle Scholar

  • [22] Piggott M.P., Bellemain E., Taberlet P., Taylor A.C, A multiplex pre-amplification method that significantly improves microsatellite amplification and error rates for faecal DNA in limiting conditions, Conserv. Genet., 2004, 5: 417–420 http://dx.doi.org/10.1023/B:COGE.0000031138.67958.44CrossrefGoogle Scholar

  • [23] Morin P.A., Chambers K.E., Boesch C., Vigilant L., Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees (Pan troglodytes verus), Mol. Ecol., 2001, 10, 1835–1844 http://dx.doi.org/10.1046/j.0962-1083.2001.01308.xCrossrefGoogle Scholar

  • [24] Campbell N.R., Narum S.R, Quantitative PCR assessment of microsatellite and SNP genotyping with variable quality DNA extracts, Conserv. Genet., 2009, 10, 779–784 http://dx.doi.org/10.1007/s10592-008-9661-7CrossrefGoogle Scholar

  • [25] Miller C.R., Joyce P., Waits L.P, Assessing allelic dropout and genotype reliability using maximum likelihood, Genetics, 2002, 160, 357–366 Google Scholar

  • [26] Valière N., Berthier P., Mouchiroud D., Pontier D., GEMINI: software for testing the effects of genotyping errors and multitubes approach for individual identification, Mol. Ecol. Notes, 2002, 2, 83–86 CrossrefGoogle Scholar

  • [27] Valière N., Bonefant C., Toigo C., Luikart G., Gaillard J-M., Klein F., Importance of a pilot study for non-invasive genetic sampling: genotyping errors and population size estimation in red deer, Conserv. Genet., 2007, 8, 69–78 http://dx.doi.org/10.1007/s10592-006-9149-2CrossrefGoogle Scholar

  • [28] Regnaut S., Lucas F.S., Fumagalli L., DNA degradation in avian faecal samples and feasibility of non-invasive genetic studies of threatened capercaille populations, Conserv. Genet., 2006, 7, 449–453 http://dx.doi.org/10.1007/s10592-005-9023-7CrossrefGoogle Scholar

  • [29] Hall T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, 41, 95–98 Google Scholar

  • [30] Segelbacher G., Paxton R.J., Steinbrueck G., Trontelj P., Storch I., Characterisation of microsatellites in capercaillie (Tetrao urogallus) (AVES), Mol. Ecol., 2000, 9, 1934–1935 http://dx.doi.org/10.1046/j.1365-294x.2000.0090111934.xCrossrefGoogle Scholar

  • [31] Piertney S.B., Höglund J., Polymorphic microsatellite markers in black grouse (Tetrao tetrix), Mol. Ecol. Notes, 2001, 1, 303–304 http://dx.doi.org/10.1046/j.1471-8278.2001.00118.xCrossrefGoogle Scholar

  • [32] Caizergues A., Dubois S., Mondor G., Rasplus J-F., Isolation and characterization of microsatellite loci in black grouse (Tetrao tetrix), Mol. Ecol. Notes, 2001, 1, 36–38 http://dx.doi.org/10.1046/j.1471-8278.2000.00015.xCrossrefGoogle Scholar

  • [33] Chambers, G.K., MacAvoy, E.S., Microsatellites: consensus and controversy, Comp. Biochem. Phys. B, 2000, 126, 455–476 http://dx.doi.org/10.1016/S0305-0491(00)00233-9CrossrefGoogle Scholar

  • [34] Valière N., Gimlet: a computer program for analysing genetic individual identification data, Mol. Ecol. Resour., 2002, 2, 377–379 Google Scholar

  • [35] Nei M., Molecular Evolutionary Genetics, Columbia University Press, New York, 1987 Google Scholar

  • [36] Rozas J., Sánchez-DelBarrio J.C., Messeguer X., Rozas R., DnaSP, DNA polymorphism analyses by the coalescent and other methods, Bioinformatics, 2003, 19, 2496–2497 http://dx.doi.org/10.1093/bioinformatics/btg359CrossrefGoogle Scholar

  • [37] Excoffier L., Lischer H.E.L., Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, 10, 564–567 http://dx.doi.org/10.1111/j.1755-0998.2010.02847.xCrossrefGoogle Scholar

  • [38] Fu Y-X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection, Genetics, 1997, 147, 915–925 Google Scholar

  • [39] Rogers A.R., Harpending H., Population growth makes waves in the distribution of pairwise genetic differences, Mol. Biol. Evol., 1992, 9, 552–569 Google Scholar

  • [40] Schneider S., Excoffier L., Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA, Genetics, 1999, 152, 1079–1089 Google Scholar

  • [41] Harpending H.C., Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution, Hum. Biol., 1994, 66, 591–660 Google Scholar

  • [42] Excoffier L., Smouse P.E., Quattro J.M., Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data, Genetics, 1992, 131, 479–491 Google Scholar

  • [43] Tamura K., Dudley J., Nei M., Kumar S., MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0, Mol. Biol. Evol., 2007, 24, 1596–1599 http://dx.doi.org/10.1093/molbev/msm092Google Scholar

  • [44] Petit R.J., El Mousadik A., Pons O., Identifying populations for conservation on the basis of genetic markers, Conserv. Biol., 1998, 12: 844–855 http://dx.doi.org/10.1046/j.1523-1739.1998.96489.xCrossrefGoogle Scholar

  • [45] Nei M., Roychoudhury A.K., Sampling variances of heterozygosity and genetic distance, Genetics, 1974, 76, 379–390 Google Scholar

  • [46] Paekal R., Smouse P.E., GenAlEx V6: Genetic Analysis in Excel. Population genetic software for teaching and research, Mol. Eco. Not., 2006, 6, 288–295 http://dx.doi.org/10.1111/j.1471-8286.2005.01155.xCrossrefGoogle Scholar

  • [47] Goudet J., Fstat version 1.2: a computer program to calculate F statistics, J. Hered., 1995, 6, 485–486 CrossrefGoogle Scholar

  • [48] Raymond M., Rousset F., GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism, J. Hered., 1995, 86, 248–249 CrossrefGoogle Scholar

  • [49] Rousset F., Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux, Mol. Ecol. Resour., 2008, 8, 103–106 http://dx.doi.org/10.1111/j.1471-8286.2007.01931.xCrossrefGoogle Scholar

  • [50] Weir B.S., Cockerham C.C, Estimating F-statistics for the analysis of population structure, Evolution, 1984, 38, 1358–1370 http://dx.doi.org/10.2307/2408641CrossrefGoogle Scholar

  • [51] Pritchard J.K., Stephens M., Donnelly P., Inference of population structure using multilocus genotype data, Genetics, 2000, 155, 945–959 Google Scholar

  • [52] Evanno G., Regnaut S., Goudet J., Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol. Ecol., 2005, 14, 2611–2620 http://dx.doi.org/10.1111/j.1365-294X.2005.02553.xCrossrefGoogle Scholar

  • [53] Earl D.A., von Holdt B.M., STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method, Conserv. Gen. Res, 2012, 4, 359–361 http://dx.doi.org/10.1007/s12686-011-9548-7CrossrefGoogle Scholar

  • [54] Jakobsson M., Rosenberg N.A., CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure, Bioinformatics, 2007, 23, 1801–1806 http://dx.doi.org/10.1093/bioinformatics/btm233CrossrefGoogle Scholar

  • [55] Rosenberg N.A., DISTRUCT, a program for the graphical display of population structure, Mol. Ecol. Not., 2004, 4, 137–138 http://dx.doi.org/10.1046/j.1471-8286.2003.00566.xCrossrefGoogle Scholar

  • [56] Piggott M.P., Taylor A.C., Remote collection of animal DNA and its applications in conservation management and under standing the population biology of rare and cryptic species, Wildlife Res., 2003, 30, 1–13 http://dx.doi.org/10.1071/WR02077CrossrefGoogle Scholar

  • [57] Wattier R., Engel C.R., Saumitou-Laprade P., Valero M., Short allele dominance as a source of heterozygote deficiency at microsatellite loci: experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rhodophyta), Mol. Ecol., 1998, 7, 1569–1573 http://dx.doi.org/10.1046/j.1365-294x.1998.00477.xCrossrefGoogle Scholar

  • [58] Broquet T., Ménard N., Petit E., Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effect on amplification success and genotyping error rates, Conserv. Genet., 2007, 8, 249–260 http://dx.doi.org/10.1007/s10592-006-9146-5CrossrefGoogle Scholar

  • [59] Hoffman J.L., Amos W., Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion, Mol. Ecol., 2005, 14, 599–612 http://dx.doi.org/10.1111/j.1365-294X.2004.02419.xCrossrefGoogle Scholar

  • [60] Kohn M.H., York E.C., Kamradt D.A., Haught G., Sauvajot R.M., Wayne R.K., Estimating population size by genotyping faeces, Proc. R. Soc. Lond. [Biol], 1999, 266, 657–663 http://dx.doi.org/10.1098/rspb.1999.0686CrossrefGoogle Scholar

  • [61] Bayes M., Smith K., Alberts S., Altmann J., Bruford M., Testing the reliability of microsatellites typing from faecal DNA in the savannah baboon, Conserv. Genet., 2000, 1, 173–176 http://dx.doi.org/10.1023/A:1026595324974CrossrefGoogle Scholar

  • [62] Lathuillière M., Ménard N., Gautier-Hion A., Crouau-Roy B., Testing the reliability of noninvasive genetic sampling by comparing analyses of blood and fecal samples in Barbary macaques (Macaca sylvanus), Am. J. Primatol., 2001, 55, 151–158 http://dx.doi.org/10.1002/ajp.1048CrossrefGoogle Scholar

  • [63] Lucchini V., Fabbri E., Marucco F., Ricci S, Boitani L., Randi E., Noninvasive molecular tracking of colonizing wolf (Canis lupus) packs in the western Italian Alps, Mol. Ecol., 2002, 11, 857–868 http://dx.doi.org/10.1046/j.1365-294X.2002.01489.xCrossrefGoogle Scholar

  • [64] Maudet C., Luikart G., Dubray D., von Hardenberg A., Taberlet P., Low genotyping error rates in wild ungulate faeces sampled in winter, Mol. Ecol. Notes, 2004, 4, 772–775 http://dx.doi.org/10.1111/j.1471-8286.2004.00787.xCrossrefGoogle Scholar

  • [65] Monteiro L., Bonnemaison D., Vekris A., Petry K.G., Bonnet J., Vidal R., et al., Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model, J. Clin. Microbiol., 1997, 35, 995–998 Google Scholar

  • [66] Liukkonen-Antilla T., Rätti O., Kvist L., Helle P., Orell M., Lack of genetic structuring and subspecies differentiation in the capercaillie (Tetrao urogallus) in Finland, Ann. Zool. Fennici, 2004, 41, 619–633 Google Scholar

  • [67] Rutkowski R., Niewęgłowski H., Dziedzic R., Kmieć M., Goździewski J., Genetic variability of Polish population of the Capercaillie Tetrao urogallus, Acta Ornithologica, 2005, 40, 27–34 CrossrefGoogle Scholar

  • [68] Caizergues A., Ratti O., Helle P., Rotelli L., Ellison L., Rasplus J.-F., Population genetic structure of male black grouse (Tetrao tetrix L.) in fragmented vs. continuous landscapes, Mol. Ecol., 2003, 12, 2297–2305 http://dx.doi.org/10.1046/j.1365-294X.2003.01903.xCrossrefGoogle Scholar

  • [69] Segelbacher G., Hoglund J., Storch I., From connectivity to isolation: genetic consequences of population fragmentation in Capercaillie across Europe, Mol. Ecol., 2003, 12, 1773–1780 http://dx.doi.org/10.1046/j.1365-294X.2003.01873.xCrossrefGoogle Scholar

  • [70] DiBattista J.D., Patterns of genetic variation in anthropogenically impacted populations, Conserv. Genet., 2008, 9, 141–156 http://dx.doi.org/10.1007/s10592-007-9317-zCrossrefGoogle Scholar

  • [71] Åberg J., Jansson G., Swenson J. E., Angelstam P., The effect of matrix on the occurrence of hazel grouse (Bonasa bonasia) in isolated habitat fragments, Oecologia, 1995, 103, 265–269 http://dx.doi.org/10.1007/BF00328613CrossrefGoogle Scholar

  • [72] Segelbacher G., Storch I., Capercaillie in the Alps:genetic evidence of metapopulation structure and population decline, Mol. Ecol., 2002, 11, 1669–1677 http://dx.doi.org/10.1046/j.1365-294X.2002.01565.xCrossrefGoogle Scholar

  • [73] Taberlet P., Fumagalli L., Wust-Saucy A.-G., Cosson J.-F., Comparative phylogeography and postglacial colonization routes in Europe, Mol. Ecol., 1998, 7, 453–464 http://dx.doi.org/10.1046/j.1365-294x.1998.00289.xCrossrefGoogle Scholar

  • [74] Marmi J., López-Giráldez F., Macdonald D.W., Calafell F., Zholnerovskaya E., Domingo-Roura X., Mitochondrial DNA reveals a strong phylogeographic structure in the badger across Eurasia, Mol. Ecol., 2006, 15, 1007–1020 http://dx.doi.org/10.1111/j.1365-294X.2006.02747.xCrossrefGoogle Scholar

  • [75] Segelbacher G., Piertney S., Phylogeography of the European Capercaillie (Tetrao urogallus) and its implications for conservation, J. Ornithol., 2007, 148, 269–274 http://dx.doi.org/10.1007/s10336-007-0153-1CrossrefGoogle Scholar

  • [76] Duriez O., Sachet J.M., Menonni E., Pidancier N., Miqulet C., Taberlet P., Phyleography of the capercaillie in Eurasia: what is the conservation status in the Pyrenees and Cantabrian Mounts? Conserv. Genet., 2007, 8, 513–526 http://dx.doi.org/10.1007/s10592-006-9165-2CrossrefGoogle Scholar

  • [77] Montadert M., Leonard P., Post-juvenile dispersal of Hazel Grouse (Bonasa bonasia) in an expanding population of the Southeastern French Alps, Ibis, 2006, 148, 1–13 CrossrefGoogle Scholar

About the article

Published Online: 2012-06-03

Published in Print: 2012-08-01


Citation Information: Open Life Sciences, Volume 7, Issue 4, Pages 759–775, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-012-0051-2.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Robert Rutkowski, Dorota Zawadzka, Dorota Merta, Anna Stanković, Patrycja Jagołkowska, Ewa Suchecka, and Janusz Kobielski
Acta Ornithologica, 2017, Volume 52, Number 2, Page 179
[2]
Joanna Mitrus, Cezary Mitrus, Robert Rutkowski, Magdalena Sikora, and Ewa Suchecka
Annales Zoologici, 2013, Volume 63, Number 4, Page 517

Comments (0)

Please log in or register to comment.
Log in