Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 7, Issue 4


Volume 10 (2015)

Rhizobial plasmids — replication, structure and biological role

Andrzej Mazur / Piotr Koper
Published Online: 2012-06-03 | DOI: https://doi.org/10.2478/s11535-012-0058-8


Soil bacteria, collectively named rhizobia, can establish mutualistic relationships with legume plants. Rhizobia often have multipartite genome architecture with a chromosome and several extrachromosomal replicons making these bacteria a perfect candidate for plasmid biology studies. Rhizobial plasmids are maintained in the cells using a tightly controlled and uniquely organized replication system. Completion of several rhizobial genome-sequencing projects has changed the view that their genomes are simply composed of the chromosome and cryptic plasmids. The genetic content of plasmids and the presence of some important (or even essential) genes contribute to the capability of environmental adaptation and competitiveness with other bacteria. On the other hand, their mosaic structure results in the plasticity of the genome and demonstrates a complex evolutionary history of plasmids. In this review, a genomic perspective was employed for discussion of several aspects regarding rhizobial plasmids comprising structure, replication, genetic content, and biological role. A special emphasis was placed on current post-genomic knowledge concerning plasmids, which has enriched the view of the entire bacterial genome organization by the discovery of plasmids with a potential chromosome-like role.

Keywords: Rhizobium; Plasmid; Replication; RepABC; Genome organization

  • [1] Perret X., Staehelin C., Broughton W.J., Molecular basis of symbiotic promiscuity, Microbiol. Mol. Biol. Rev., 2000, 64, 180–201 http://dx.doi.org/10.1128/MMBR.64.1.180-201.2000CrossrefGoogle Scholar

  • [2] Den Herder G., Parniske M., The unbearable naivety of legumes in symbiosis, Curr. Opin. Plant. Biol., 2009, 12, 491–9 http://dx.doi.org/10.1016/j.pbi.2009.05.010CrossrefGoogle Scholar

  • [3] Gibson K.E., Kobayashi H., Walker G.C., Molecular determinants of a symbiotic chronic infection, Annu. Rev. Genet., 2008, 42, 413–41 http://dx.doi.org/10.1146/annurev.genet.42.110807.091427CrossrefGoogle Scholar

  • [4] Jones K.M., Kobayashi H., Davies B.W., Taga M.E., Walker G.C., How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model, Nat. Rev. Microbiol., 2007, 5, 619–633 http://dx.doi.org/10.1038/nrmicro1705CrossrefGoogle Scholar

  • [5] Masson-Boivin C., Giraud E., Perret X., Batut J., Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?, Trends Microbiol., 2009, 17, 458–466 http://dx.doi.org/10.1016/j.tim.2009.07.004CrossrefGoogle Scholar

  • [6] Palacios R, Newton W.E., Genomes and genomics of nitrogen-fixing organisms, (Ed.), Palacios R., Newton W.E., Springer, Dordrecht, The Netherlands, 2005 http://dx.doi.org/10.1007/1-4020-3054-1CrossrefGoogle Scholar

  • [7] Watson R.J., Heys R., Replication regions of Sinorhizobium meliloti plasmids, Plasmid, 2006, 55, 87–98 http://dx.doi.org/10.1016/j.plasmid.2005.08.003CrossrefGoogle Scholar

  • [8] Barran L.R., Ritchot N., Bromfield E.S.P., Sinorhizobium meliloti plasmid pRm1132f replicates by a rolling-circle mechanism, J. Bacteriol., 2001, 183, 2704–2708 http://dx.doi.org/10.1128/JB.183.8.2704-2708.2001CrossrefGoogle Scholar

  • [9] Thomas C.M., Paradigm of plasmid organization, Mol. Microbiol., 2000, 37, 485–491 http://dx.doi.org/10.1046/j.1365-2958.2000.02006.xCrossrefGoogle Scholar

  • [10] Campbell S.C., Mullins R.D., In vivo visualization of type II plasmid segregation: bacterial actin filaments pushing plasmids, J. Cell Biol., 2007, 179, 1059–1066 http://dx.doi.org/10.1083/jcb.200708206CrossrefGoogle Scholar

  • [11] Schumacher M.A., Structural biology of plasmid partition: uncovering the molecular mechanisms of DNA segregation, Biochem. J., 2008, 412, 1–18 http://dx.doi.org/10.1042/BJ20080359CrossrefGoogle Scholar

  • [12] Gerdes K., Howard M., Szardenings F., Pushing and pulling in prokaryotic DNA segregation, Cell, 2010, 141, 927–942 http://dx.doi.org/10.1016/j.cell.2010.05.033CrossrefGoogle Scholar

  • [13] Hao J.J., Yarmolinsky M., Effects of the P1 plasmid centromere on expression of P1 partition genes, J. Bacteriol., 2002, 184, 4857–67 http://dx.doi.org/10.1128/JB.184.17.4857-4867.2002CrossrefGoogle Scholar

  • [14] Cevallos M.A., Cervantes-Rivera R., Gutiérrez-Ríos R.M., The repABC plasmid family, Plasmid, 2008, 60, 19–37 http://dx.doi.org/10.1016/j.plasmid.2008.03.001CrossrefGoogle Scholar

  • [15] Izquierdo J., Venkova-Canova T., Ramírez-Romero M.A., Téllez-Sosa J., Hernández-Lucas I., Sanjuan J., et al., An antisense RNA plays a central role in the replication control of a repC plasmid, Plasmid, 2005, 54, 259–277 http://dx.doi.org/10.1016/j.plasmid.2005.05.003CrossrefGoogle Scholar

  • [16] Stiens M., Schneiker S., Keller M., Kuhn S., Pühler A., Schlüter A., Sequence analysis of the 144-kilobase accessory plasmid pSmeSM11a, isolated from a dominant Sinorhizobium meliloti strain identified during a long-term field release experiment, Appl. Environ. Microbiol., 2006, 72, 3662–3672 http://dx.doi.org/10.1128/AEM.72.5.3662-3672.2006CrossrefGoogle Scholar

  • [17] Young J.P., Crossman L.C., Johnston A.W., Thomson N.R., Ghazoui Z.F., Hull K.H., et al., Rhizobium leguminosarum has recognizable core and accessory components, Genome Biol., 2006, 7, R34 http://dx.doi.org/10.1186/gb-2006-7-4-r34CrossrefGoogle Scholar

  • [18] Ramirez-Romero M.A., Soberon N., Perez-Osequera A., Tellez-Sosa J., Cevallos M.A., Structural elements required for replication and incompatibility of the Rhizobium etli symbiotic plasmid, J. Bacteriol., 2000, 182, 3117–3124 http://dx.doi.org/10.1128/JB.182.11.3117-3124.2000CrossrefGoogle Scholar

  • [19] Ramírez-Romero M.A., Téllez-Sosa J., Barrios H., Pérez-Oseguera A., Rosas V., Cevallos M.A., RepA negatively autoregulates the transcription of the repABC operon of the Rhizobium etli symbiotic plasmid basic replicon, Mol. Microbiol., 2001, 42, 195–204 http://dx.doi.org/10.1046/j.1365-2958.2001.02621.xCrossrefGoogle Scholar

  • [20] MacLellan S.R., Zaheer R., Sartor A.L., MacLean A.M., Finan T.M., Identification of a megaplasmid centromere reveals genetic structural diversity within the repABC family of basic replicons, Mol. Microbiol., 2006, 59, 1559–1575 http://dx.doi.org/10.1111/j.1365-2958.2006.05040.xCrossrefGoogle Scholar

  • [21] Bignel C., Thomas C.M., The bacterial ParA-ParB partitioning proteins, J. Biotechnol., 2001, 91, 1–34 http://dx.doi.org/10.1016/S0168-1656(01)00293-0CrossrefGoogle Scholar

  • [22] Williams D.R., Thomas C.M., Active partitioning of bacterial plasmids, J. Gen. Microbiol., 1992, 138, 1–16 Google Scholar

  • [23] Gerdes K., Møller-Jensen J., Bugge-Jensen R., Plasmid and chromosome partitioning: surprises from phylogeny, Mol. Microbiol., 2000, 37, 455–66 http://dx.doi.org/10.1046/j.1365-2958.2000.01975.xCrossrefGoogle Scholar

  • [24] Bartosik D., Baj J., WŁodarczyk M., Molecular and functional analysis of pTAV320. a repABC-type replicon of the Paracoccus versutus composite plasmid pTAV1, Microbiol., 1998, 144, 3149–3157 http://dx.doi.org/10.1099/00221287-144-11-3149CrossrefGoogle Scholar

  • [25] Cervantes-Rivera R., Pedraza-López F., Pérez-Segura G., Cevallos M.A., The replication origin of a repABC plasmid, BMC Microbiol., 2011, 11, 158 http://dx.doi.org/10.1186/1471-2180-11-158CrossrefGoogle Scholar

  • [26] Cervantes-Rivera R., Romero-López C., Berzal-Herranz A., Cevallos M.A., Analysis of the mechanism of action of the antisense RNA that controls the replication of the repABC plasmid p42d, J. Bacteriol., 2010, 192, 3268–78 http://dx.doi.org/10.1128/JB.00118-10CrossrefGoogle Scholar

  • [27] MacLellan S.R., Smallbone L.A., Sibley C.D., Finan T.M., The expression of a novel antisense gene mediates incompatibility within the large repABC family of alpha-proteobacterial plasmids, Mol. Microbiol., 2005, 55, 611–623 http://dx.doi.org/10.1111/j.1365-2958.2004.04412.xCrossrefGoogle Scholar

  • [28] Venkova-Canova T., Soberón N.E., Ramírez-Romero M.A., Cevallos M.A., Two discrete elements are required for the replication of a repABC plasmid: an antisense RNA and a stem-loop structure, Mol. Microbiol., 2004, 54, 1431–1444 http://dx.doi.org/10.1111/j.1365-2958.2004.04366.xCrossrefGoogle Scholar

  • [29] Chai Y., Winans S.C., A small antisense RNA downregulates expression of an essential replicase protein of an Agrobacterium tumefaciens Ti plasmid, Mol Microbiol., 2005, 56, 1574–1585 http://dx.doi.org/10.1111/j.1365-2958.2005.04636.xCrossrefGoogle Scholar

  • [30] Mazur A., Majewska B., Stasiak G., Wielbo J., Skorupska A., repABC-based replication systems of Rhizobium leguminosarum bv. trifolii TA1 plasmids: incompatibility and evolutionary analyses, Plasmid, 2011, 66, 53–66 http://dx.doi.org/10.1016/j.plasmid.2011.04.002CrossrefGoogle Scholar

  • [31] Chai Y., Winans S.C., RepB protein of an Agrobacterim tumefaciens Ti plasmid binds to two adjacent sites between repA and repB for plasmid partitioning and autorepression, Mol. Microbiol., 2005, 58, 1114–1129 http://dx.doi.org/10.1111/j.1365-2958.2005.04886.xCrossrefGoogle Scholar

  • [32] Livny J., Yamaichi Y., Waldor M.K., Distribution of centromere-like parS sites in bacteria: insights from comparative genomics, J. Bacteriol., 2007, 189, 8693–8703 http://dx.doi.org/10.1128/JB.01239-07CrossrefGoogle Scholar

  • [33] Novick, R.P., Plasmid incompatibility, Microbiol Rev., 1987, 51, 381–395 Google Scholar

  • [34] Austin S., Nordström K., Partition-mediated incompatibility of bacterial plasmids, Cell, 1990, 60, 351–354 http://dx.doi.org/10.1016/0092-8674(90)90584-2CrossrefGoogle Scholar

  • [35] Soberón N., Venkova-Canova T., Ramírez-Romero M.A., Téllez-Sosa J., Cevallos M.A., Incompatibility and the partitioning site of the repABC basic replicon of the symbiotic plasmid from Rhizobium etli, Plasmid, 2004, 51, 203–216 http://dx.doi.org/10.1016/j.plasmid.2004.01.005CrossrefGoogle Scholar

  • [36] Gonzalez V., Santamaria R.I., Bustos S., Hernandez-Gonzales I., Medrano-Soto A., Moreno-Hagelsieb G., et al., The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons, Proc. Natl. Acad. Sci. USA, 2006, 103, 3834–3839 http://dx.doi.org/10.1073/pnas.0508502103CrossrefGoogle Scholar

  • [37] Finan T.M., Weidner S., Wong K., Buhrmester J., Chain P., Vorhölter F.J., et al., The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti, Proc. Natl. Acad. Sci. USA, 2001, 98. 9889–9894 http://dx.doi.org/10.1073/pnas.161294698Google Scholar

  • [38] Park K., Chattoraj D.K., DnaA boxes in the P1 plasmid origin: the effect of their position on the directionality of replication and plasmid copy number, J. Mol. Biol., 2001, 310, 69–81 http://dx.doi.org/10.1006/jmbi.2001.4741CrossrefGoogle Scholar

  • [39] Pappas K.M., Winans S.C., The RepA and RepB autorepressors and TraR play opposing roles in the regulation of a Ti plasmid repABC operon, Mol. Microbiol., 2003, 49, 441–455 http://dx.doi.org/10.1046/j.1365-2958.2003.03560.xCrossrefGoogle Scholar

  • [40] Pappas K.M., Winans S.C., A LuxR-type regulator from Agrobacterium tumefaciens elevates Ti plasmid copy number by activating transcription of plasmid replication genes, Mol. Microbiol., 2003, 28, 1059–1073 http://dx.doi.org/10.1046/j.1365-2958.2003.03488.xCrossrefGoogle Scholar

  • [41] Tun-Garrido C., Bustos P., González V., Brom S., Conjugative transfer of p42a from rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing, J Bacteriol., 2003, 185, 1681–1692 http://dx.doi.org/10.1128/JB.185.5.1681-1692.2003CrossrefGoogle Scholar

  • [42] White C.E., Winans S.C., The quorum-sensing transcription factor TraR decodes its DNA binding site by direct contacts with DNA bases and by detection of DNA flexibility, Mol. Microbiol., 2007, 64, 245–56 http://dx.doi.org/10.1111/j.1365-2958.2007.05647.xCrossrefGoogle Scholar

  • [43] Turner S.L., Rigottier-Gois L., Power R.S., Amarger N., Young J.P., Diversity of repC plasmid-replication sequences in Rhizobium leguminosarum, Microbiology, 1996, 142, 1705–1713 http://dx.doi.org/10.1099/13500872-142-7-1705CrossrefGoogle Scholar

  • [44] Palmer K.M., Turner S.L., Young J.P., Sequence diversity of the plasmid replication gene repC in the Rhizobiaceae, Plasmid, 2000, 44, 209–219 http://dx.doi.org/10.1006/plas.2000.1488CrossrefGoogle Scholar

  • [45] Fondi M., Bacci G., Brilli M., Papaleo M.C., Mengoni A., Vaneechoutte M., et al., Exploring the evolutionary dynamics of plasmids: the Acinetobacter pan-plasmidome, BMC Evol. Biol., 2010, 24, 10–59 Google Scholar

  • [46] Reeve W., O’Hara G., Chain P., Ardley J., Brau L., Nandesena K., et al., Complete genome sequence of Rhizobium leguminosarum bv. trifolii strain WSM1325, an effective microsybiont of annual Mediterranean clovers, Stand. Genomic Sci., 2010, 2, 347–356 http://dx.doi.org/10.4056/sigs.852027CrossrefGoogle Scholar

  • [47] Reeve W., O’Hara G., Chain P., Ardley J., Brau L., Nandesena K., et al., Complete genome sequence of Rhizobium leguminosarum bv. trifolii strain WSM2304, an effective microsymbiont of the South America clover Trifolium polymorphum, Stand. Genomic. Sci., 2010, 2, 66–76 http://dx.doi.org/10.4056/sigs.44642CrossrefGoogle Scholar

  • [48] Cevallos M.A., Porta H., Izquierdo J., Tun-Garrido C., García-de-los-Santos A., Dávila G., et al., Rhizobium etli CFN42 contains at least three plasmids of the repABC family: a structural and evolutionary analysis, Plasmid, 2002, 48, 104–116 http://dx.doi.org/10.1016/S0147-619X(02)00119-1CrossrefGoogle Scholar

  • [49] Castillo-Ramírez S., Vázquez-Castellanos J.F., González V., Cevallos M.A., Horizontal gene transfer and diverse functional constrains within a common replication-partitioning system in Alphaproteobacteria: the repABC operon, BMC Genomics, 2009, 18, 536 http://dx.doi.org/10.1186/1471-2164-10-536CrossrefGoogle Scholar

  • [50] Barnett M.J., Fisher R.F., Jones T., Komp C., Abola A.P., Barloy-Hubler F., et al., Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid, Proc. Natl. Acad. Sci. USA, 2001, 98, 9883–9888 http://dx.doi.org/10.1073/pnas.161294798CrossrefGoogle Scholar

  • [51] Capela D., Barloy-Hubler F., Gouzy J., Bothe G., Ampe F., Batut J., et al., Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021, Proc. Natl. Acad. Sci. USA, 2001, 98, 9877–9882 http://dx.doi.org/10.1073/pnas.161294398Google Scholar

  • [52] Galibert F., Finan T.M., Long S.R., Puhler A., Abola P., Ampe F., et al., The composite genome of the legume symbiont Sinorhizobium meliloti, Science, 2001, 293, 668–672 http://dx.doi.org/10.1126/science.1060966CrossrefGoogle Scholar

  • [53] Reeve W., Chain P., O’Hara G., Ardley J., Nandesena K., Bräu L., et al., Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419, Stand. Genomic Sci., 2010, 2, 77–86 http://dx.doi.org/10.4056/sigs.43526CrossrefGoogle Scholar

  • [54] Kaneko T., Nakamura Y., Sato S., Asamizu E., Kato T., Sasamoto S., et al., Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti, DNA Res., 2000, 7, 331–338 http://dx.doi.org/10.1093/dnares/7.6.331CrossrefGoogle Scholar

  • [55] González V., Acosta J.L., Santamaría R.I., Bustos P., Fernández J.L., Hernández-González I.L., et al., Conserved symbiotic plasmid DNA sequences in the multireplicon pangenomic structure of Rhizobium etli, Appl. Environ. Microbiol., 2010, 76. 1604–1614 http://dx.doi.org/10.1128/AEM.02039-09CrossrefGoogle Scholar

  • [56] Freiberg C., Fellay R., Bairoch A., Broughton W.J., Rosenthal A., Perret X., Molecular basis of symbiosis between Rhizobium and legumes, Nature, 1997, 387, 394–401 http://dx.doi.org/10.1038/387394a0CrossrefGoogle Scholar

  • [57] Streit W.R., Schmitz R.A., Perret X., Staehelin C., Deakin W.J., Raasch C., Liesegang H., Broughton W.J., An evolutionary hot spot: the pNGR234b replicon of Rhizobium sp. strain NGR234, J. Bacteriol., 2004, 186, 535–542 http://dx.doi.org/10.1128/JB.186.2.535-542.2004CrossrefGoogle Scholar

  • [58] Viprey V., Rosenthal A., Broughton W.J., Perret X., Genetic snapshots of the Rhizobium species NGR234 genome, Genome Biol., 2000, 1, 0014.1–0014.17 http://dx.doi.org/10.1186/gb-2000-1-6-research0014CrossrefGoogle Scholar

  • [59] Goodner B., Hinkle G., Gattung S., Miller N., Blanchard M., Qurollo B., et al., Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58, Science, 2001, 294, 2323–2328 http://dx.doi.org/10.1126/science.1066803CrossrefGoogle Scholar

  • [60] Wood D.W., Setubal J.C., Kaul R., Monks D.E., Kitajima J.P., Okura V.K., et al., The genome of the natural genetic engineer Agrobacterium tumefaciens C58, Science, 2001, 294, 2317–2323 http://dx.doi.org/10.1126/science.1066804CrossrefGoogle Scholar

  • [61] Slater S.C., Goldman B.S., Goodner B., Setubal J.C., Farrand S.K., Nester E.W., et al., Genome sequences of tree Agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria, J.Bacteriol., 2009, 191, 2501–2511 http://dx.doi.org/10.1128/JB.01779-08CrossrefGoogle Scholar

  • [62] Kuhn S., Stiens M., Pühler A., Schlüter A., Prevalence of pSmeSM11a-like plasmids in indigenous Sinorhizobium meliloti strains isolated in the course of a field release experiment with genetically modified S. meliloti strains, FEMS Microbiol. Ecol., 2008, 63, 118–131 http://dx.doi.org/10.1111/j.1574-6941.2007.00399.xCrossrefGoogle Scholar

  • [63] Oresnik I.J., Liu S.L., Yost C.K., Hynes M.F., Megaplasmid pRme2011a of Sinorhizobium meliloti is not required for viability, J. Bacteriol., 2000, 182, 3582–3586 http://dx.doi.org/10.1128/JB.182.12.3582-3586.2000CrossrefGoogle Scholar

  • [64] Chen H., Higgins J., Oresnik I.J., Hynes M.F., Natera S., Djordjevic M.A., et al., Proteome analysis demonstrates complex replicon and luteolin interactions in pSyma-cured derivatives of Sinorhizobium meliloti strain 2011, Electrophoresis, 2000, 21, 3833–3842 http://dx.doi.org/10.1002/1522-2683(200011)21:17<3833::AID-ELPS3833>3.0.CO;2-ICrossrefGoogle Scholar

  • [65] Charles T.C., Finan T.M., Analysis of a 1600-kilobase Rhizobium meliloti megaplasmid using defined deletions generated in vivo, Genetics, 1991, 127, 5–20 Google Scholar

  • [66] Cheng J., Sibley C.D., Zaheer R., Finan T.M., A Sinorhizobium meliloti minE mutant has an altered morphology and exhibits defects in legume symbiosis, Microbiology, 2007, 153, 2375–2387 http://dx.doi.org/10.1099/mic.0.2006/001362-0CrossrefGoogle Scholar

  • [67] Finan T.M., Kunkel B., De Vos G.F., Signer E.R., Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J. Bacteriol., 167, 66–72 Google Scholar

  • [68] Poysti N.J., Loewen E.D., Wang Z., Oresnik I.J., Sinorhizobium meliloti pSymB carries genes necessary for arabinose transport and catabolism. Microbiology, 2007, 153, 727–736 http://dx.doi.org/10.1099/mic.0.29148-0CrossrefGoogle Scholar

  • [69] Wong K., Finan T.M., Golding G.B., Dinucleotide compositional analysis of Sinorhizobium meliloti using the genome signature: distinguishing chromosomes and plasmids, Funct. Integr. Genomics, 2002, 2, 274–281 http://dx.doi.org/10.1007/s10142-002-0068-0CrossrefGoogle Scholar

  • [70] Peixoto L., Zavala A., Romero H., Musto H., The strength of translational selection for codon usage varies in the three replicons of Sinorhizobium meliloti, Gene, 2003, 320, 109–116 http://dx.doi.org/10.1016/S0378-1119(03)00815-1CrossrefGoogle Scholar

  • [71] Giuntini E., Mengoni A., De Filippo C., Cavalieri D., Aubin-Horth N., Landry C.R., et al., Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains, BMC Genomics, 2005, 6, 158 http://dx.doi.org/10.1186/1471-2164-6-158CrossrefGoogle Scholar

  • [72] Guo X., Flores M., Morales L., García D., Bustos P., González V., et al., DNA diversification in two Sinorhizobium species, J. Bacteriol., 2007, 189, 6474–6476 http://dx.doi.org/10.1128/JB.00384-07CrossrefGoogle Scholar

  • [73] Bailly X., Olivieri I., Brunel B., Cleyet-Marel J.C., Béna G., Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen-fixing symbionts of Medicago species, J. Bacteriol., 2007, 189, 5223–5236 http://dx.doi.org/10.1128/JB.00105-07CrossrefGoogle Scholar

  • [74] Reeve W.G., Bräu L., Castelli J., Garau G., Sohlenkamp C., Geiger O., et al., The Sinorhizobium medicae WSM419 lpiA gene is transcriptionally activated by FsrR and required to enhance survival in lethal acid conditions, Microbiology, 2006, 152, 3049–3059 http://dx.doi.org/10.1099/mic.0.28764-0CrossrefGoogle Scholar

  • [75] Sullivan J.T., Ronson C.W., Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene, Proc. Natl. Acad. Sci. USA, 1998, 95, 5145–5149 http://dx.doi.org/10.1073/pnas.95.9.5145CrossrefGoogle Scholar

  • [76] Sullivan J.T., Trzebiatowski J.R., Cruickshank R.W., Gouzy J., Brown S.D., Elliot R.M., et al., Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A, J. Bacteriol., 2002, 184, 3086–3095 http://dx.doi.org/10.1128/JB.184.11.3086-3095.2002CrossrefGoogle Scholar

  • [77] Ramsay J.P., Sullivan J.T., Jambari N., Ortori C.A., Heeb S., Williams P., et al., A LuxRI-family regulatory system controls excision and transfer of the Mesorhizobium loti strain R7A symbiosis island by activating expression of two conserved hypothetical genes, Mol. Microbiol., 73, 1141–1155 Google Scholar

  • [78] Flores M., Mavingui P., Girard L., Perret X., Broughton W.J., Martínez-Romero E., et al., Three replicons of Rhizobium sp. Strain NGR234 harbor symbiotic gene sequences, J. Bacteriol., 1998, 180, 6052–6053 Google Scholar

  • [79] Mavingui P., Flores M., Guo X., Dávila G., Perret X., Broughton W.J., et al., Dynamics of genome architecture in Rhizobium sp. strain NGR234, J. Bacteriol., 2002, 184, 171–176 http://dx.doi.org/10.1128/JB.184.1.171-176.2002CrossrefGoogle Scholar

  • [80] Flores M., Mavingui P., Perret X., Broughton W.J., Romero D., Hernández G., et al., Prediction, identification, and artificial selection of DNA rearrangements in Rhizobium: toward a natural genomic design, Proc. Natl. Acad. Sci. USA, 2000, 97, 9138–9143 http://dx.doi.org/10.1073/pnas.97.16.9138CrossrefGoogle Scholar

  • [81] Schmeisser C., Liesegang H., Krysciak D., Bakkou N., Le Quéré A., Wollherr A., et al., Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems, Appl. Environ. Microbiol., 2009, 75, 4035–4045 http://dx.doi.org/10.1128/AEM.00515-09Google Scholar

  • [82] Król J.E., Mazur A., Marczak M., Skorupska A., Application of physical and genetic map of Rhizobium leguminosarum bv. trifolii TA1 to comparison of three closely related rhizobial genomes, Mol. Genet. Genomics, 2008, 279, 107–121 http://dx.doi.org/10.1007/s00438-007-0299-9CrossrefGoogle Scholar

  • [83] Crossman L.C., Castillo-Ramírez S., McAnnula C., Lozano L., Vernikos G.S., Acosta J.L., et al., A common genomic framework for a diverse assembly of plasmids in the symbiotic nitrogen fixing bacteria, PLoS One, 2008, 3, 2567 http://dx.doi.org/10.1371/journal.pone.0002567CrossrefGoogle Scholar

  • [84] Król J.E., Mazur A., Marczak M., Skorupska A., Syntenic arrangements of the surface polysaccharide biosynthesis genes in Rhizobium leguminosarum, Genomics, 2007, 89, 237–247 http://dx.doi.org/10.1016/j.ygeno.2006.08.015CrossrefGoogle Scholar

  • [85] Rodríguez-Quiñones F., Maguire M., Wallington E.J., Gould P.S., Yerko V., Downie J.A., et al., Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth, Arch. Microbiol., 2005, 183, 253–265 http://dx.doi.org/10.1007/s00203-005-0768-7CrossrefGoogle Scholar

  • [86] Hynes M.F., Quandt J., O’Connell M.P., Pühler A., Direct selection for curing and deletion of Rhizobium plasmids using transposons carrying the Bacillus subtilis sacB gene, Gene, 1989, 78, 111–120 http://dx.doi.org/10.1016/0378-1119(89)90319-3CrossrefGoogle Scholar

  • [87] Ramachandran V.K., East A.K., Karunakaran R., Downie J.A., Poole P.S., Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics, Genome Biol., 2011, 12, R106 http://dx.doi.org/10.1186/gb-2011-12-10-r106CrossrefGoogle Scholar

  • [88] González V., Bustos P., Ramírez-Romero M.A., Medrano-Soto A., Salgado H., Hernández-González I., et al., The mosaic structure of the symbiotic plasmid of Rhizobium etli CFN42 and its relation to other symbiotic genome compartments, Genome Biol., 2003, 4, R36 http://dx.doi.org/10.1186/gb-2003-4-6-r36CrossrefGoogle Scholar

  • [89] Landeta C., Davalos A., Cevallos M.A., Geiger O., Brom S., Romero D., Plasmids with a chromosome-like role in Rhizobium, J. Bacteriol., 2011, 193, 1317–1326 http://dx.doi.org/10.1128/JB.01184-10CrossrefGoogle Scholar

  • [90] Villaseñor T., Brom S., Dávalos A., Lozano L., Romero D., Los Santos A.G., Housekeeping genes essential for pantothenate biosynthesis are plasmid-encoded in Rhizobium etli and Rhizobium leguminosarum, BMC Microbiol., 2011, 11, 66 http://dx.doi.org/10.1186/1471-2180-11-66CrossrefGoogle Scholar

  • [91] Brom S., García de los Santos A., Stepkowsky T., Flores M., Dávila G., Romero D., et al., Different plasmids of Rhizobium leguminosarum bv. phaseoli are required for optimal symbiotic performance, J. Bacteriol., 1992, 174, 5183–5189 CrossrefGoogle Scholar

  • [92] Brom S., García-de los Santos A., Cervantes L., Palacios R., Romero D., In Rhizobium etli symbiotic plasmid transfer, nodulation competitivity and cellular growth require interaction among different replicons, Plasmid, 2000, 44, 34–43 http://dx.doi.org/10.1006/plas.2000.1469CrossrefGoogle Scholar

  • [93] Glick B.R., Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase, FEMS Microbiol. Lett., 2005, 251, 1–7 http://dx.doi.org/10.1016/j.femsle.2005.07.030CrossrefGoogle Scholar

  • [94] Mazur A., Stasiak G., Wielbo J., Kubik-Komar A., Marek-Kozaczuk M., Skorupska A., Intragenomic diversity of Rhizobium leguminosarum bv. trifolii clover nodule isolates, BMC Microbiol., 2011, 11, 123 http://dx.doi.org/10.1186/1471-2180-11-123CrossrefGoogle Scholar

  • [95] Wielbo J., Marek-Kozaczuk M., Mazur A., Kubik-Komar A., Skorupska A., Genetic and metabolic divergence within a Rhizobium leguminosarum bv. trifolii population recovered from clover nodules, Appl. Environ. Microbiol., 2010, 76, 4593–4600 http://dx.doi.org/10.1128/AEM.00667-10CrossrefGoogle Scholar

  • [96] Oresnik I.J., Pacarynuk L.A., O’Brien S.A.P., Yost C.K., Hynes M.F., Plasmid-encoded catabolic genes in Rhizobium leguminosarum bv. trifolii: evidence for a plant-inducible rhamnose locus involved in competition for nodulation Mol. Plant-Microbe Interact., 1998, 11, 1175–1185 http://dx.doi.org/10.1094/MPMI.1998.11.12.1175CrossrefGoogle Scholar

  • [97] Richardson J.S., Hynes M.F., Oresnik I.J., A genetic locus necessary for rhamnose uptake and catabolism in Rhizobium leguminosarum bv. trifolii, J. Bacteriol., 2004, 186, 8433–8442 http://dx.doi.org/10.1128/JB.186.24.8433-8442.2004CrossrefGoogle Scholar

  • [98] Hirsch P.R., Van Montagu M., Johnston A.W.B., Brewin N.J., Schell J., Physical identification of bacteriocinogenic, nodulation and other plasmids in strains of Rhizobium leguminosarum, J. Gen. Microbiol., 1980, 120, 403–412 CrossrefGoogle Scholar

  • [99] Oresnik I.J., Twelker S., Hynes M.F., Cloning and characterization of a Rhizobium leguminosarum gene encoding a bacteriocin with similarities to RTX toxins. Appl. Environ. Microbiol., 1999, 65, 2833–2840 Google Scholar

  • [100] Baldani J.I., Weaver R. W., Hynes M.F., Eardly B.D., Utilization of carbon substrates, electrophoretic enzyme patterns, and symbiotic performance of plasmid-cured clover rhizobia, Appl. Environ. Microbiol., 1992, 58, 2308–2314 Google Scholar

  • [101] Moënne-Loccoz Y., Weaver R.W., Plasmids influence growth of rhizobia in the rhizosphere of clover, Soil Biol. Biochem., 1995, 27, 1001–1004 http://dx.doi.org/10.1016/0038-0717(95)00035-DCrossrefGoogle Scholar

  • [102] Moënne-Loccoz Y., Weaver R.W., Involvement of plasmids in saprophytic performance and sodium chloride tolerance of clover rhizobia W14-2 in vitro, App. Soil Ecol., 1996, 3, 137–148 http://dx.doi.org/10.1016/0929-1393(95)00077-1CrossrefGoogle Scholar

  • [103] Ding H., Yip C.B., Geddes B.A., Oresnik I.J., Hynes M.F., Glycerol utilization by Rhizobium leguminosarum requires an ABC transporter and affects competition for nodulation, Microbiology, 2012, 158, 1369–1378 http://dx.doi.org/10.1099/mic.0.057281-0CrossrefGoogle Scholar

  • [104] Yost C.K., Rath A.M., Noel T.C., Hynes M.F., Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae, Microbiology, 2006, 152, 2061–2074 http://dx.doi.org/10.1099/mic.0.28938-0CrossrefGoogle Scholar

  • [105] Phillips D.A., Sande E.S., Vriezen J.A.C., de Bruijn F.J., Le Rudulier D., Joseph C.M., A new genetic locus in sinorhizobium meliloti is involved in stachydrine utilization, Appl. Environ. Microbiol., 1998, 64, 3954–3960 Google Scholar

  • [106] Pistorio M., Giusti M.A., Del Papa M.F., Draghi W.O., Lozano M.J., Tejerizo G.T., Lagares A., Conjugal properties of the Sinorhizobium meliloti plasmid mobilome, FEMS Microbiol. Ecol., 2008, 65, 372–382 http://dx.doi.org/10.1111/j.1574-6941.2008.00509.xCrossrefGoogle Scholar

  • [107] Toussaint A., Chandler M., Prokaryote genome fluidity: toward a system approach of the mobilome, Methods Mol. Biol., 2012, 804, 57–80 http://dx.doi.org/10.1007/978-1-61779-361-5_4CrossrefGoogle Scholar

  • [108] Djordjevic M.A., Zurkowski W., Shine J., Rolfe B.G., Sym plasmid transfer to various symbiotic mutants of Rhizobium trifolii, R. leguminosarum, and R. meliloti, J. Bacteriol., 1983, 156, 1035–1045 Google Scholar

  • [109] Brom S., Girard L., García-de los Santos A., Sanjuan-Pinilla J.M., Olivares J., Sanjuan J., Conservation of plasmid-encoded traits among bean-nodulating Rhizobium species, Appl. Environ. Microbiol., 2002, 68, 2555–2561 http://dx.doi.org/10.1128/AEM.68.5.2555-2561.2002CrossrefGoogle Scholar

  • [110] Ding H., Hynes M.F., Plasmid transfer systems in the rhizobia, Can. J. Microbiol., 2009, 55, 917–927 http://dx.doi.org/10.1139/W09-056CrossrefGoogle Scholar

  • [111] Brom S., Girard L., Tun-Garrido C., García-de los Santos A., Bustos P., González V., et al., Transfer of the symbiotic plasmid of Rhizobium etli CFN42 requires cointegration with p42a, which may be mediated by site-specific recombination, J. Bacteriol., 2004, 186, 7538–7548 http://dx.doi.org/10.1128/JB.186.22.7538-7548.2004CrossrefGoogle Scholar

  • [112] Piper K.R., Farrand S.K., Quorum sensing but not autoinduction of Ti plasmid conjugal transfer requires control by the opine regulon and the antiactivator TraM, J. Bacteriol., 2000, 182, 1080–1088 http://dx.doi.org/10.1128/JB.182.4.1080-1088.2000CrossrefGoogle Scholar

  • [113] McAnulla C., Edwards A., Sanchez-Contreras M., Sawers R.G., Downie J.A., Quorum-sensing-regulated transcriptional initiation of plasmid transfer and replication genes in Rhizobium leguminosarum biovar viciae, Microbiology, 2007, 153, 2074–2082 http://dx.doi.org/10.1099/mic.0.2007/007153-0CrossrefGoogle Scholar

  • [114] Pérez-Mendoza D., Sepúlveda E., Pando V., Muñoz S., Nogales J., Olivares J., et al., Identification of the rctA gene, which is required for repression of conjugative transfer of rhizobial symbiotic megaplasmids, J. Bacteriol., 2005, 187, 7341–7350 http://dx.doi.org/10.1128/JB.187.21.7341-7350.2005CrossrefGoogle Scholar

  • [115] MacLean A.M., Finan T.M., Sadowsky M.J., Genomes of the symbiotic nitrogen-fixing bacteria of legumes, Plant Physiol., 2007, 144, 615–622 http://dx.doi.org/10.1104/pp.107.101634CrossrefGoogle Scholar

  • [116] Flores M., Morales L., Avila A., González V., Bustos P., García D., et al., Diversification of DNA sequences in the symbiotic genome of Rhizobium etli, J. Bacteriol., 2005, 187, 7185–7192 http://dx.doi.org/10.1128/JB.187.21.7185-7192.2005CrossrefGoogle Scholar

  • [117] Bentley S.D., Parkhill J., Comparative genomic structure of prokaryotes, Annu. Rev. Genet., 2004, 38, 771–792 http://dx.doi.org/10.1146/annurev.genet.38.072902.094318CrossrefGoogle Scholar

  • [118] Egan E.S., Fogel M.A., Waldor M.K., Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes, Mol. Microbiol., 2005, 56, 1129–1138 http://dx.doi.org/10.1111/j.1365-2958.2005.04622.xCrossrefGoogle Scholar

  • [119] Batut J., Andersson S.G., O’Callaghan D., The evolution of chronic infection strategies in the alpha-proteobacteria, Nat. Rev. Microbiol., 2004, 2, 933–945 http://dx.doi.org/10.1038/nrmicro1044CrossrefGoogle Scholar

  • [120] Boussau B., Karlberg E.O., Frank A.C., Legault B.A., Andersson S.G., Computational inference of scenarios for alpha-proteobacterial genome evolution, Proc. Natl. Acad. Sci. USA, 2004, 101, 9722–9727 http://dx.doi.org/10.1073/pnas.0400975101CrossrefGoogle Scholar

  • [121] Guo X., Flores M., Mavingui P., Fuentes S.I., Hernández G., Dávila G., et al., Natural genomic design in Sinorhizobium meliloti: novel genomic architectures, Genome Res., 2003, 13, 1810–1817 Google Scholar

  • [122] Guerrero G., Peralta H., Aguilar A., Díaz R., Villalobos M.A., Medrano-Soto A., et al., Evolutionary, structural and functional relationships revealed by comparative analysis of syntenic genes in Rhizobiales, BMC Evol. Biol., 2005, 17, 5–55 Google Scholar

  • [123] Cervantes L., Bustos P., Girard L., Santamaría R.I., Dávila G., Vinuesa P., et al., The conjugative plasmid of a bean-nodulating Sinorhizobium fredii strain is assembled from sequences of two Rhizobium plasmids and the chromosome of a Sinorhizobium strain, BMC Microbiol., 2011, 11, 149 http://dx.doi.org/10.1186/1471-2180-11-149CrossrefGoogle Scholar

  • [124] Flores M., González V., Pardo M.A., Leija A., Martínez E., Romero D., et al., Genomic instability in Rhizobium phaseoli, J. Bacteriol., 1988, 170, 1191–1196 Google Scholar

  • [125] Flores M., González V., Brom S., Martínez E., Piñero D., Romero D., et al., Reiterated DNA sequences in Rhizobium and Agrobacterium spp, J. Bacteriol., 1987, 169, 5782–5788 Google Scholar

  • [126] Girard M., Flores M., Brom S., Romero D., Palacios R., Dávila G., Structural complexity of the symbiotic plasmid of Rhizobium leguminosarum bv. phaseoli, J Bacteriol., 1991, 173, 2411–2419 Google Scholar

  • [127] Acosta J.L., Eguiarte L.E., Santamaría R.I., Bustos P., Vinuesa P., Martínez-Romero E., et al., Genomic lineages of Rhizobium etli revealed by the extent of nucleotide polymorphisms and low recombination, BMC Evol. Biol., 2011, 11, 305 http://dx.doi.org/10.1186/1471-2148-11-305CrossrefGoogle Scholar

  • [128] Harrison P.W., Lower R.P., Kim N.K., Young J.P., Introducing the bacterial ’chromid’: not a chromosome, not a plasmid, Trends Microbiol., 2010, 18, 141–148 http://dx.doi.org/10.1016/j.tim.2009.12.010CrossrefGoogle Scholar

  • [129] Hynes M.F., McGregor N.F., Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen-fixing nodules by Rhizobium leguminosarum, Mol. Microbiol., 1990, 4, 567–574 http://dx.doi.org/10.1111/j.1365-2958.1990.tb00625.xCrossrefGoogle Scholar

  • [130] Chain P.S., Denef V.J., Konstantinidis K.T., Vergez L.M., Agulló L., Reyes V.L., et al., Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility, Proc. Natl. Acad. Sci. USA, 2006, 103, 15280–15287 http://dx.doi.org/10.1073/pnas.0606924103Google Scholar

  • [131] Moënne-Loccoz Y., Baldani J.I., Weaver R.W., Sequential heat-curing of Tn5-Mob-sac labelled plasmids from Rhizobium to obtain derivatives with various combinations of plasmids and no plasmid, Lett. Appl. Microbiol., 1995, 20, 175–179 http://dx.doi.org/10.1111/j.1472-765X.1995.tb00420.xCrossrefGoogle Scholar

  • [132] Tettelin H., Riley D., Cattuto C., Medini D., Comparative genomics: the bacterial pan-genome, Curr. Opin. Microbiol., 2008, 11, 472–477 http://dx.doi.org/10.1016/j.mib.2008.09.006CrossrefGoogle Scholar

  • [133] Medini D., Donati C., Tettelin H., Masignani V., Rappuoli R., The microbial pan-genome, Curr. Opin. Genet., 2005, 15, 589–594 http://dx.doi.org/10.1016/j.gde.2005.09.006CrossrefGoogle Scholar

  • [134] Bentley S., Sequencing the species pan-genome, Nat. Rev. Microbiol., 2009, 7, 258–259 http://dx.doi.org/10.1038/nrmicro2123CrossrefGoogle Scholar

  • [135] Black M., Moolhuijzen P., Chapman B., Barrero R., Howieson J., Hungria M., et al., The genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters, Genes, 2012, 3, 138–166 http://dx.doi.org/10.3390/genes3010138CrossrefGoogle Scholar

About the article

Published Online: 2012-06-03

Published in Print: 2012-08-01

Citation Information: Open Life Sciences, Volume 7, Issue 4, Pages 571–586, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-012-0058-8.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

N. Dulmini Wathugala, Kasuni M. Hemananda, Cynthia B. Yip, and Michael F. Hynes
Microbiology , 2020
Johannes Döhlemann, Marcel Wagner, Carina Happel, Martina Carrillo, Patrick Sobetzko, Tobias J. Erb, Martin Thanbichler, and Anke Becker
ACS Synthetic Biology, 2017, Volume 6, Number 6, Page 968
David A. Baltrus, Kevin Dougherty, Kayla R. Arendt, Marcel Huntemann, Alicia Clum, Manoj Pillay, Krishnaveni Palaniappan, Neha Varghese, Natalia Mikhailova, Dimitrios Stamatis, T. B. K. Reddy, Chew Yee Ngan, Chris Daum, Nicole Shapiro, Victor Markowitz, Natalia Ivanova, Nikos Kyrpides, Tanja Woyke, and A. Elizabeth Arnold
Microbial Genomics, 2017, Volume 3, Number 2
Thomas G. Platt, Elise R. Morton, Ian S. Barton, James D. Bever, and Clay Fuqua
Frontiers in Plant Science, 2014, Volume 5
Grażyna Stasiak, Andrzej Mazur, Jerzy Wielbo, Małgorzata Marczak, Kamil Żebracki, Piotr Koper, and Anna Skorupska
Journal of Applied Genetics, 2014, Volume 55, Number 4, Page 515
Ángeles Pérez-Oseguera and Miguel A. Cevallos
Plasmid, 2013, Volume 70, Number 3, Page 362
Monika Marek-Kozaczuk, Agnieszka Leszcz, Jerzy Wielbo, Sylwia Wdowiak-Wróbel, and Anna Skorupska
Systematic and Applied Microbiology, 2013, Volume 36, Number 4, Page 252

Comments (0)

Please log in or register to comment.
Log in