Jump to ContentJump to Main Navigation
Show Summary Details

Open Life Sciences

formerly Central European Journal of Biology

IMPACT FACTOR increased in 2015: 0.814
5-year IMPACT FACTOR: 0.870

SCImago Journal Rank (SJR) 2015: 0.362
Source Normalized Impact per Paper (SNIP) 2015: 0.538
Impact per Publication (IPP) 2015: 0.929

Open Access
See all formats and pricing

Select Volume and Issue


Vi antigen of Salmonella enetrica serovar Typhi — biosynthesis, regulation and its use as vaccine candidate

1Department of Biotechnology, Hamdard University, 110062, New Delhi, India

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Life Sciences. Volume 7, Issue 5, Pages 825–838, ISSN (Online) 2391-5412, DOI: 10.2478/s11535-012-0082-8, August 2012

Publication History

Published Online:


Vi capsular polysaccharide (Vi antigen) was first identified as the virulence antigen of Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever in humans. The presence of Vi antigen differentiates S. Typhi from other serovars of Salmonella. Vi antigen is a linear polymer consisting of α-1,4-linked-N-acetyl-galactosaminuronate, whose expression is controlled by three chromosomal loci, namely viaA, viaB and ompB. Both viaA and viaB region are present on Salmonella Pathogenicity Island-7, a large, mosaic, genetic island. The viaA region encodes a positive regulator and the viaB locus is composed of 11 genes designated tviA-tviE (for Vi biosyhthesis), vexA-vexE (for Vi antigen export) and ORF 11. Vi polysaccharide is synthesized from UDP-N-acetyl glucosamine in a series of steps requiring TviB, TviC, and TviE, and regulation of Vi polysaccharide synthesis is controlled by two regulatory systems, rscB-rscC (viaA locus) and ompR-envZ (ompB locus), which respond to changes in osmolarity. This antigen is highly immunogenic and has been used for the formulation of one of the currently available vaccines against typhoid. Despite advancement in the area of vaccinology, its pace of progress needs to be accelerated and effective control programmes will be needed for proper disease management.

Keywords: S. Typhi; Vi antigen; SPI-7; rcsB-rcsC and ompR-envZ component systems; rpoS gene; Vi-anti typhoid vaccine

  • [1] Muyembe-Tamfum J.J., Veyi J., Kaswa M., Lunguya O., Verhaegen J., Boelaert M., An outbreak of peritonitis caused by multidrugresistant Salmonella Typhi in Kinshasa, Democratic Republic of Congo, Travel Med. Infect. Dis., 2009, 7, 40–43 http://dx.doi.org/10.1016/j.tmaid.2008.12.006 [CrossRef]

  • [2] Ochiai R.L., Acosta C.J., Danovaro-Holliday M.C., Baiqing D., Bhattacharya S.K., Agtini M.D., et al., Domi Typhoid Study Group. A study of typhoid fever in five Asian countries: disease burden and implications for control, Bull. World Health Organ, 2008, 86, 260–268 http://dx.doi.org/10.2471/BLT.06.039818 [CrossRef]

  • [3] Crump J.A., Mintz E.D., Global trends in typhoid and paratyphoid fever, Clin. Infect. Dis., 2010, 50, 241–246 http://dx.doi.org/10.1086/649541 [CrossRef]

  • [4] Paterson G.K., Maskell D.J., Recent advances in the field of Salmonella Typhi vaccines, Hum. Vaccine, 2010, 6, 379–384 http://dx.doi.org/10.4161/hv.6.5.10755 [CrossRef]

  • [5] Crump J.A., Luby S.P., Mintz E.D., The global burden of typhoid fever, Bull. World Health Organ., 2004, 82, 346–353

  • [6] Allam U.S., Krishna M.G., Lahiri A., Joy O., Chakravortty D., Salmonella enterica Serovar Typhimurium Lacking hfq Gene Confers Protective Immunity against Murine Typhoid, PLoS ONE, 2011, 6, e16667 http://dx.doi.org/10.1371/journal.pone.0016667 [CrossRef]

  • [7] Charles R.C., Sheikh A., Krastins B., Harris J.B., Bhuiyan M.S., LaRocque R.C., et al., Characterization of Anti-Salmonella enterica Serotype Typhi Antibody Responses in Bacteremic Bangladeshi Patients by an Immunoaffinity Proteomics-Based Technology, Clin. Vaccine Immunol., 2010, 17, 1188–1195 http://dx.doi.org/10.1128/CVI.00104-10 [CrossRef]

  • [8] Majumder P.P., Staats H.F., Roy N.S., Varma B., Ghosh T., Maiti S., et al., Genetic determinants of immune-response to a polysaccharide vaccine for typhoid, HUGO. J., 2009, 3, 17–30 http://dx.doi.org/10.1007/s11568-010-9134-1 [CrossRef]

  • [9] Hornick R.B., Greisman S.E.., Woodward T.E., DuPont H.L., Dawkins A.T., Snyder M.J., Typhoid fever: pathogenesis and immunologic control, New Engl. J. Med., 1970, 283, 686–691 http://dx.doi.org/10.1056/NEJM197009242831306 [CrossRef]

  • [10] Hessel L., Debois H., Fletcher M., Dumas R., Experience with Salmonella typhi Vi capsular polysaccharide vaccine, Eur. J. Clin. Microbiol. Infect. Dis., 1999, 18, 609–620 http://dx.doi.org/10.1007/s100960050361 [CrossRef]

  • [11] Daniels E.M., Schneerson R., Egan W.M., Szu S.C., Robbins J.B., Characterization of the Salmonella paratyphi C Vi polysaccharide, Infect. Immun., 1989, 57, 3159–3164

  • [12] Su S.C., Bystrichy S., Physical, chemical, antigenic, and immunologic characterization of polygalacturonan, its derivatives, and Vi antigen from Salmonella typhi, Methods Enzymol., 2003, 363, 552–567 http://dx.doi.org/10.1016/S0076-6879(03)01079-6 [CrossRef]

  • [13] Zhang H., Zhou Y., Bao H., Liu H., Vi Antigen Biosynthesis in Salmonella typhi: Characterization of UDP-N-acetyl glucosamine C-6 dehydrogenase (TviB) and UDP-N-acetyl glucosaminuronic acid C-4 epimerase (TviC), Biochemistry, 2006, 45, 8163–8173 http://dx.doi.org/10.1021/bi060446d

  • [14] Felix A., Pitt R.M., A new antigen of B. typhosus, Lancet, 1934, 227, 186–191 http://dx.doi.org/10.1016/S0140-6736(00)44360-6 [CrossRef]

  • [15] Felix A., Pitt R.M., The Vi antigens of various Salmonella types, Br. J. Exp. Pathol., 1936, 17, 81–86

  • [16] Baker E.E., Whitesider R.E., Basch R., Derow M.A., The Vi antigen of the Enterobacteriaceae. II. Immunologic and biologic properties, J. Immunol., 1959, 83, 680–686

  • [17] Virlogeux-Payant I., Popoff M.Y., The Vi antigen of Salmonella typhi, Bull. Inst. Pasteur, 1996, 94, 237–250 http://dx.doi.org/10.1016/S0020-2452(97)86018-6 [CrossRef]

  • [18] Looney R.J., Steigbigel R.T., Role of the Vi antigen of Salmonella typhi in resistance to host defense in vitro, J. Lab. Clin. Med., 1986, 108, 506–516

  • [19] Hirose K., Ezaki T., Miyake M., Li T., Khan A.Q., Kawamura Y., et al., Survival of Vi-capsulated and Vi-deleted Salmonella typhi strains in cultured macrophage expressing different levels of CD14 antigen, FEMS Microbiol. Lett., 1997, 147, 259–265 http://dx.doi.org/10.1111/j.1574-6968.1997.tb10251.x [CrossRef]

  • [20] Robbins J.D., Robbins J.B., Reexamination of the protective role of the capsular polysaccharide (Vi antigen) of Salmonella typhi, J. Infect. Dis., 1984, 150, 436–449 http://dx.doi.org/10.1093/infdis/150.3.436 [CrossRef]

  • [21] Santander M.J., Roland K.L., Curtiss III R., Regulation of Vi Capsular Polysaccharide Synthesis in Salmonella enteric Serotype Typhi, J. Infect. Developing Countries, 2008, 2, 412–420

  • [22] Klugman K.P., Koornhof H.J., Robbins J.B., Le Cam N.N., Immunogenicity, efficacy and serological correlate of protection of Salmonella typhi Vi capsular polysaccharide vaccine three years after immunization, Vaccine, 1996, 14, 435–438 http://dx.doi.org/10.1016/0264-410X(95)00186-5 [CrossRef]

  • [23] Johnson E.M., Krauskop F.B., Baron L.S., Genetic mapping of Vi and somatic antigenic determinants in Salmonella, J. Bacteriol., 1965, 90, 302–308

  • [24] Johnson E.M., Baron L.S., Genetic transfer of the Vi antigen from Salmonella typhosa to Escherichia coli, J. Bacteriol., 1969, 99, 355–359

  • [25] Pickard D., Li J., Roberts M., Maskell D., Hone D., Levine M., et al., Characterization of defined ompR mutants of Salmonella typhi: ompR is involved in the regulation of Vi polysaccharide expression, Infect. Immun., 1994, 62, 3984–3993

  • [26] Johnson E.M., Krauskop F.B., Baron L.S., Genetic analysis of the viA-his chromosomal region in Salmonella, J. Bacteriol., 1966, 92, 1457–1463

  • [27] Snellings N.J., Johnson E.M., Baron L., Genetic basis of Vi antigen expression in Salmonella paratyphi C, J. Bacteriol., 1977, 131, 57–62

  • [28] Puente J.L., Verdugo-Rodriguez A., Calva E., Expression of Salmonella typhiand Escherichia coli OmpC is influenced differently by medium osmolarity; dependence on Escherichia coli OmpR, Mol. Microbiol., 1991, 5, 1205–1210 http://dx.doi.org/10.1111/j.1365-2958.1991.tb01894.x [CrossRef]

  • [29] Helena M.B., Seth-Smith. SPI-7: Salmonella’s Vi-Encoding Pathogenicity Island, J. Infect. Developing Countries, 2008, 2, 267–271

  • [30] Hardt W., Urlaub H., Galán J.E., A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage, Proc. Natl. Acad. Sci. (USA), 1998, 95, 2574–2579 http://dx.doi.org/10.1073/pnas.95.5.2574 [CrossRef]

  • [31] Zhang X.L., Morris C., Hackett J., Molecular cloning, nucleotide sequence, and function of a site-specific recombinase encoded in the major ‘Pathogenicity Island’ of Salmonella typhi, Gene, 1997, 202, 139–146.81 http://dx.doi.org/10.1016/S0378-1119(97)00466-6 [CrossRef]

  • [32] Zhang X.L., Tsui I.S., Yip C.M., Fung A.W., Wong D.K., Dai X., et al., Salmonella enteric serovar Typhi uses type IVB pili to enter human intestinal epithelial cells, Infect. Immun., 2000, 68, 3067–3073 http://dx.doi.org/10.1128/IAI.68.6.3067-3073.2000 [CrossRef]

  • [33] Bueno S.M., Santiviago C.A., Murillo A.A., Fuentes J.A., Trombert A.N., Rodas P.I., et al., Precise excision of the large pathogenicity island, SPI7, in Salmonella enteric serovar Typhi, J. Bacteriol., 2004, 186, 3202–3213

  • [34] Pickard D., Wain J., Baker S., Line A., Chohan S., Fookes M., et al., Composition, acquisition, and distribution of the Vi exo polysaccharideencoding Salmonella enteric pathogenicity island SPI-7, J. Bacteriol., 2003, 18, 5055–5065 http://dx.doi.org/10.1128/JB.185.17.5055-5065.2003 [CrossRef]

  • [35] Bishop A., House D., Perkins T., Baker S., Kingsley R.A., Dougan G., Interaction of Salmonella enteric serovar Typhi with Cultured Epithelial Cells: Roles of Surface Structures in Adhesion and Invasion, Microbiology, 2008, 154, 1914–1926 http://dx.doi.org/10.1099/mic.0.2008/016998-0 [CrossRef]

  • [36] Daigle F., Typhi genes expressed during infection or involved in pathogenesis, J. Infect. Developing Countries, 2008, 2, 431–437 http://dx.doi.org/10.3855/jidc.157 [CrossRef]

  • [37] Hashimoto Y., Li N., Yokoyama H., Ezaki T., Molecular cloning of the ViaB region of Salmonella typhi, FEMS Microbiol. Lett., 1991, 90, 53–56 http://dx.doi.org/10.1111/j.1574-6968.1991.tb05124.x [CrossRef]

  • [38] Kolyva S., Waxin H., Popoff M.Y., The Vi antigen of Salmonella typhi: molecular analysis of the viaB locus, J. Gen. Microbiol., 1992, 138, 297–304 http://dx.doi.org/10.1099/00221287-138-2-297 [CrossRef]

  • [39] Hashimoto Y., Li N., Yokoyama H., Ezaki T., Complete nucleotide sequence and molecular characterization of ViaB region encoding Vi antigen in Salmonella typhi, J. Bacteriol., 1993, 175, 4456–4465

  • [40] Houng H.S., Noon K.F., Ou J.T., Baron L.S., Expression of Vi antigen in Escherichia coli K-12: characterization of ViaB from Citrobacter freundii and identity of ViaA with RcsB, J. Bacteriol., 1992, 174, 5910–5915

  • [41] Arricau N., Hermant D., Waxin H., Ecobichon C., Duffey P.S., Popoff M.Y., The RcsB-RcsC regulatory system of Salmonella typhi differentially modulates the expression of invasion proteins, flagellin and Vi antigen in response to osmolarity, Mol. Microbiol., 1998, 29, 835–850 http://dx.doi.org/10.1046/j.1365-2958.1998.00976.x [CrossRef]

  • [42] Winter S.E., Raffatellu M., Wilson R.P., Russmann H., Baumler A., The Salmonella enteric serotype Typhi regulator TviA reduces interleukin-8 production in intestinal epithelial cells by repressing flagellin secretion, Cell Microbiol., 2008, 10, 247–261

  • [43] Virlogeux I., Waxin H., Ecobichon C., Lee J.O., Popoff M.Y., Characterization of the rcsA and rcsB genes from Salmonella typhi: rcsB through tviA is involved in regulation of Vi antigen synthesis, J. Bacteriol., 1996, 178, 1691–1698

  • [44] Hashimoto Y., Quayum K.A., Ezaki T., Positive auto regulation of vipR expression in ViaB region-encoded Vi antigen of Salmonella typhi, J. Bacteriol., 1996, 178, 1430–1436

  • [45] Waxin H., Virologeux I., Kolyva S., Popoff M.Y., Identification of six open reading frames in the Salmonella enteric subsp. Enteric ser. Typhi viaB locus involved in Vi antigen production, Res. Microbiol., 1993, 144, 363–371 http://dx.doi.org/10.1016/0923-2508(93)90193-6 [CrossRef]

  • [46] Virlogeux I., Waxin H., Ecobichon C., Popoff M.Y., Role of the viaBlocus in synthesis, transport and expression of Salmonella typhi Vi antigen, Microbiology, 1995, 141, 3039–3047 http://dx.doi.org/10.1099/13500872-141-12-3039 [CrossRef]

  • [47] Gottesman S., Stout V., Regulation of capsular polysaccharide synthesis in Escherichia coli K-12, Mol. Microbiol., 1991, 5, 1599–1606 http://dx.doi.org/10.1111/j.1365-2958.1991.tb01906.x [CrossRef]

  • [48] Winter S.E., Winter M.G., Thiennimitr P., Gerriets V.A., Nuccio S.P., Rüssmann H., et al., The TviA auxiliary protein renders the Salmonella enterica serotype Typhi RcsB regulon responsive to changes in osmolarity, Mol. Microbiol., 2009, 74, 175–193 http://dx.doi.org/10.1111/j.1365-2958.2009.06859.x [CrossRef]

  • [49] Tran Q.T., Gomez G., Khare S., Lawhon S.D, Raffatellu M., Baumler A.J., et al., The Salmonella enterica serotype Typhi Vi capsular antigen is expressed after entering the ileal mucosa, Infect. Immun., 2010, 78, 527–535 http://dx.doi.org/10.1128/IAI.00972-09 [CrossRef]

  • [50] Winter S.E., Winter M.G., Godinez I., Yang H.J., Russmann H., Andrews-Polymenis H.L., et al., A Rapid Change in Virulence Gene Expression during the Transition from the Intestinal Lumen into Tissue Promotes Systemic Dissemination of Salmonella, PLoS Pathog., 2010, 6, e1001060 http://dx.doi.org/10.1371/journal.ppat.1001060 [CrossRef]

  • [51] Janis C., Grant A.J., McKinley T.J., Morgan F.J.E., John V.F., Houghton J., et al., In Vivo Regulation of the Vi Antigen in Salmonella and Induction of Immune Responses with an In Vivo-Inducible Promoter, Infect. Immun., 2011, 79, 2481–2488 http://dx.doi.org/10.1128/IAI.01265-10 [CrossRef]

  • [52] Kugelmass I.N., Biochemistry of blood in health and disease, Charles C. Thomas Publisher, Springfield, IL, 1959

  • [53] Miller V.L., Mekalanos J.J., A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR, J. Bacteriol., 1988, 170, 2575–2583

  • [54] Tartera C., Metcalf E.S., Osmolarity and growth phase overlap in regulation of Salmonella typhi adherence to and invasion of human intestinal cells, Infect. Immun., 1993, 61, 3084–3089

  • [55] Raffatellu M., Chessa D., Wilson R.P., Dusold R., Rubino S., Baumler A.J., The Vi capsular antigen of Salmonella enteric serotype Typhi reduces Tolllike receptor dependent interleukin-8 expression in theintestinal mucosa, Infect. Immun., 2005, 73, 3367–3374 http://dx.doi.org/10.1128/IAI.73.6.3367-3374.2005 [CrossRef]

  • [56] Zhao L., Ezak T., Li Z.Y., Kawamura Y., Hirose K., Watanabe H., Vi-suppressed wild strain Salmonella typhi cultured in high osmolarity is hyper invasive toward epithelial cells and destructive of Peyer’s patches, Microbiol. Immunol., 2001, 45, 149–158 [CrossRef]

  • [57] Haneda T., Winter S.E., Butler B.P., Wilson R.P., Tukel C., Winter M.G., et al., The Capsule-Encoding viaB Locus Reduces Intestinal Inflammation by a Salmonella Pathogenicity Island 1-Independent Mechanism, Infect. Immun., 2009, 77, 2932–2942 http://dx.doi.org/10.1128/IAI.00172-09 [CrossRef]

  • [58] Hengge-Aronis R., Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase, Microbiol. Mol. Biol. Rev., 2002, 66, 373–395 http://dx.doi.org/10.1128/MMBR.66.3.373-395.2002 [CrossRef]

  • [59] Kowarz L., Coynault C., Robbe-Saule V., Norel F., The Salmonella typhimurium katF (rpoS) gene: cloning, nucleotide sequence, and regulation of spvR and spvABCD virulence plasmid genes, J. Bacteriol., 1994, 176, 6852–6860

  • [60] Nickerson C.A., Curtiss R. III, Role of sigma factor RpoS in initial stages of Salmonella typhimurium infection, Infect. Immun., 1997, 65, 1814–1823

  • [61] Coynault C., Robbe-Saule V., Norel F., Virulence and vaccine potential of Salmonella typhimurium mutants deficient in the expression of the RpoS (sigma S) regulon, Mol. Microbiol., 1996, 22, 149–160 http://dx.doi.org/10.1111/j.1365-2958.1996.tb02664.x [CrossRef]

  • [62] Lowen P.C., Hengge-Aronis R., The role of the sigma factor sigmas (KatF) in bacterial global regulation, Annu. Rev. Microbiol., 1994, 48, 53–80 http://dx.doi.org/10.1146/annurev.mi.48.100194.000413 [CrossRef]

  • [63] Khan A.Q., Zhao L., Hirose K., Miyake M., Li T., Hashimoto Y., et al., Salmonella typhi rpoS mutant is less cytotoxic than the parent strain but survives inside resting THP-1 macrophages, FEMS Microbiol. Lett., 1998, 161, 201–208 http://dx.doi.org/10.1111/j.1574-6968.1998.tb12949.x

  • [64] Lee H.Y., Cho S.A., Lee I.S., Park J.H., Seok S.H., Baek M.W., et al., Evaluation of phoP and rpoS mutants of Salmonella enteric serovar Typhi as attenuated typhoid vaccine candidates: virulence and protective immune responses in intranasally immunized mice, FEMS Immunol. Med. Microbiol., 2007, 51, 310–318

  • [65] Santander J., Wanda S.Y., Nickerson C.A., Curtiss R. III, Role of RpoS in fine-tuning the synthesis of Vi capsular polysaccharide in Salmonella enteric serotype Typhi, Infect. Immunol., 2007, 75, 1382–1392 http://dx.doi.org/10.1128/IAI.00888-06 [CrossRef]

  • [66] Shi H., Santander J., Brenneman K.E., Wanda S.Y., Wang S., Senechal P., et al., Live Recombinant Salmonella Typhi Vaccines Constructed to Investigate the Role of rpoS in Eliciting Immunity to a Heterologous Antigen, PLoS ONE, 2010, 5, e11142 http://dx.doi.org/10.1371/journal.pone.0011142 [CrossRef]

  • [67] Cui C., Carbis R., An S.J., Jang H., Czerkinsky C., Szu S.C., et al., Physical and chemical characterization and immunologic properties of Salmonella enterica serovar typhi capsular polysaccharide-diphtheria toxoid conjugates, Clin. Vaccine Immunol., 2010, 17, 73–79 http://dx.doi.org/10.1128/CVI.00266-09 [CrossRef]

  • [68] Ghosh S., Chakraborty K., Nagaraja T., Basak S., Koley H., Dutta S., et al., An adhesion protein of Salmonella enterica serovar Typhi is required for pathogenesis and potential target for vaccine development, Proc. Natl. Acad. Sci. (USA), 2011, 108, 3348–3353 http://dx.doi.org/10.1073/pnas.1016180108 [CrossRef]

  • [69] Cheminay C., Hensel M., Rational design of Salmonella recombinant vaccines, Int. J. Med. Microbiol., 2008, 298, 87–98 http://dx.doi.org/10.1016/j.ijmm.2007.08.006 [CrossRef]

  • [70] Germanier R., Fuer E., Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: a candidate strain for a live, oral typhoid vaccine, J. Infect. Dis., 1975, 131, 553–558 http://dx.doi.org/10.1093/infdis/131.5.553 [CrossRef]

  • [71] Ivanoff B., Levine M.M., Lambert P.H., Vaccination against typhoid fever: present status, Bull. World Health Organ, 1994, 72, 957–971

  • [72] Keitel W.A., Bond N.L., Zahradnik J.M., Cramton T.A., Robbins J.B., Clinical and serological responses following primary and booster immunization with Salmonella typhi Vi capsular polysaccharide vaccines, Vaccine, 1994, 12, 195–199 http://dx.doi.org/10.1016/0264-410X(94)90194-5 [CrossRef]

  • [73] Merican I., Typhoid fever: present and future, Med. J. Malaysia, 1997, 52, 299–308

  • [74] Levine M.M., Ferreccio C., Abrego P., Martin O.S., Ortiz E., Cryz S., Duration of efficacy of Ty21a, attenuated Salmonella typhi live oral vaccine, Vaccine, 1999, 17, S22–S27 http://dx.doi.org/10.1016/S0264-410X(99)00231-5 [CrossRef]

  • [75] Levine M.M., Mass vaccination to control epidemic and endemic typhoid fever, Curr. Top. Microbiol. Immunol., 2006, 304, 231–46 http://dx.doi.org/10.1007/3-540-36583-4_13 [CrossRef]

  • [76] Whitaker J.A., Franco-Paredes C., del Rio C., Edupuganti S., Rethinking typhoid fever vaccines: implications for travelers and people living in highly endemic areas, J. Travel. Med., 2009, 16, 46–52 http://dx.doi.org/10.1111/j.1708-8305.2008.00273.x [CrossRef]

  • [77] De Roeck D., Ochiai R.L., Yang J., Anh D.D., Alag V., Clemens J.D., Typhoid vaccination: the Asian experience, Expert Rev. Vaccines, 2008, 7, 547–60 http://dx.doi.org/10.1586/14760584.7.5.547 [CrossRef]

  • [78] Yang H.H., Kilgore P.E., Yang L.H., Park J.K., Pan Y.F., Kim Y., et al., An outbreak of typhoid fever Xing-An county, People’s Republic of China, 1999: estimation of the field effectiveness of Vi polysaccharide typhoid vaccine, J. Infect. Dis., 2001, 183, 1775–80 http://dx.doi.org/10.1086/320729 [CrossRef]

  • [79] World Health Organization, Typhoid vaccines: WHO position paper. Wkly. Epidemiol. Record, 2008, 83, 49–60

  • [80] Ochiai R.L., Acosta C.J., Agtini M., Bhattacharya S.K., Bhutta Z.A., Do C.G., et al., The use of typhoid vaccines in Asia: the DOMI experience, Clin. Infect. Dis., 2007, 45, S34–38 http://dx.doi.org/10.1086/518144 [CrossRef]

  • [81] Gupta D., Faridi M.M., Aggarwal A., Kaur I., Seroprevalence of anti-Vi antibodies and immunogenicity of Typhim Vi vaccine in children, Hum. Vaccin., 2008, 4, 305–308 http://dx.doi.org/10.4161/hv.4.4.5824 [CrossRef]

  • [82] Sur D., Ochiai R.L., Bhattacharya S.K., Ganguly N.K., Ali M., Manna B., et al., A cluster-randomized effectiveness trial of Vi typhoid vaccine in India, N. Engl. J. Med., 2009, 361, 403–405 http://dx.doi.org/10.1056/NEJMoa0807521 [CrossRef]

  • [83] Keddy K.H., Klugman K.P., Hansford C.F., Blondeau C., Bouveret le Cam N.N., Persistence of antibodies to the Salmonella typhi Vi capsular polysaccharide vaccine in South African school children ten years after immunization, Vaccine, 1999, 17, 110–113 http://dx.doi.org/10.1016/S0264-410X(98)00160-1 [CrossRef]

  • [84] Panchanathan V., Kumar S., Yeap W., Devi S., Ismail R., Sarijan S., et al., Comparison of safety and immunogenicity of a Vi polysaccharide typhoid vaccine with a whole-cell killed vaccine in Malaysian Air Force recruits, Bull. World Health Organ, 2001, 79, 811–81

  • [85] Alvarez J.I., Inhibition of toll like receptor immune responses by microbial pathogens, Front Biosci., 2005, 10, 582–587 http://dx.doi.org/10.2741/1554 [CrossRef]

  • [86] Babu S., Bhat S.Q., Kumar N.P., Anuradha R., Kumaran P., Gopi P.G., et al., Attenuation of tolllike receptor expression and function in latent tuberculosis by coexistent filarial infection with restoration following antifilarial chemotherapy, PLoS Negl. Trop. Dis., 2009, 3, e489 http://dx.doi.org/10.1371/journal.pntd.0000489 [CrossRef]

  • [87] Wilson R.P., Raffatellu M., Chessa D., Winter S.E., Tukel C., Baumler A.J., The Vi-capsule prevents Toll-like receptor 4 recognition of Salmonella, Cell Microbiol., 2008, 10, 876–890 http://dx.doi.org/10.1111/j.1462-5822.2007.01090.x [CrossRef]

  • [88] Vos Q., Lees A., Wu Z.Q., Snapper C.M., Mond J.J., B-cell activation by Tcell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms, Immunol. Rev., 2000, 176, 154–170 http://dx.doi.org/10.1034/j.1600-065X.2000.00607.x [CrossRef]

  • [89] Snapper C.M., Shen Y., Khan A.Q., Colino J., Zelazowski P., Mond J.J., et al., Distinct types of T-cell help for the induction of a humoral immune response to Streptococcus pneumoniae, Trends Immunol., 2001, 22, 308–311 http://dx.doi.org/10.1016/S1471-4906(01)01926-3 [CrossRef]

  • [90] Obukhanych T.V., Nussenzweig M.C., T-independent type II immune responses generate memory B cells, J. Exp. Med., 2006, 203, 305–310 http://dx.doi.org/10.1084/jem.20052036 [CrossRef]

  • [91] Chelvarajan R.L., Collins S.M., Van Willigen J.M., Bondada S., The unresponsiveness of aged mice to polysaccharide antigens is a result of a defect in macrophage function, J. Leukoc. Biol., 2005, 77, 503–512 http://dx.doi.org/10.1189/jlb.0804449 [CrossRef]

  • [92] Kroon F.P., van Dissel J.T., Ravensbergen E., Nibbering P.H., van Furth R., Impaired antibody response after immunization of HIV infected individuals with the polysaccharide vaccine against Salmonella typhi (Typhim-Vi), Vaccine, 1999, 17, 2941–2945 http://dx.doi.org/10.1016/S0264-410X(99)00167-X [CrossRef]

  • [93] Lin F.Y.C., Ho V.A., Khiem H.B., Trach D.D., Bay P.V., Thanh T.C., et al., The efficacy of a Salmonella Typhi Vi conjugate vaccine in two to-five-year-old children, N. Engl. J. Med., 2001, 344, 1263–1269 http://dx.doi.org/10.1056/NEJM200104263441701 [CrossRef]

  • [94] Ian R., Mackay M.D., Fred S., Rosen M.D., Vaccines and Vaccination, N. Engl. J. Med., 2001, 345, 1042–1053 http://dx.doi.org/10.1056/NEJMra011223 [CrossRef]

  • [95] Szu S.C., Robbins J.B., Schneerson R., Lin F.Y., Polysaccharide-based Conjugate Vaccines for Enteric Bacterial Infections: Typhoid Fever, Nontyphoidal Salmonellosis, and Escherichia coli 0157:H7, In: Levine M.M., Dougan G., Good M.F., Liu M.A., Nabel G.J., Nataro J.P., et al., (Eds), New Generation Vaccines, 4th ed., Informa Healthcare USA, Inc; New York, 2009

  • [96] Canh D.G., Lin F., Thiem V.D., Trach D.D., Trong N.D., Mao N.D., et al., Effect of dosage on immunogenicity of a Vi conjugate vaccine injected twice into 2- to 5-year-old Vietnamese children, Infect. Immun., 2004, 72, 6586–6588 http://dx.doi.org/10.1128/IAI.72.11.6586-6588.2004 [CrossRef]

  • [97] Bhutta Z.A., Khan M.I., Soofi S.B., Ochiai R.L., New advances in typhoid Fever vaccination strategies, Adv. Exp. Med. Biol., 2011, 697, 17–39 http://dx.doi.org/10.1007/978-1-4419-7185-2_3 [CrossRef]

  • [98] Micoli F., Rondini S., Pisoni I., Proietti D., Berti F., Costantino P., et al., Vi-CRM197 as a new conjugate vaccine against Salmonella Typhi, Vaccine, 2011, 29, 712–720 http://dx.doi.org/10.1016/j.vaccine.2010.11.022 [CrossRef]

  • [99] Rennels M.B., Edwards K.M., Keyserling H.L., Reisinger K.S., Hogerman D.A., Madore D.V., et al., Safety and immunogenicity of heptavalent pneumococcal vaccine conjugated to CRM197 in United States infants, Pediatrics, 1998, 101, 604–611 http://dx.doi.org/10.1542/peds.101.4.604 [CrossRef]

  • [100] Shinefield H.R., Black S., Ray P., Chang I., Lewis N., Fireman B., et al., Safety and immunogenicity of heptavalent pneumococcal CRM197 conjugate vaccine in infants and toddlers, Pediatr. Infect. Dis. J., 1999, 18, 757–763 http://dx.doi.org/10.1097/00006454-199909000-00004 [CrossRef]

  • [101] Snape M.D., Perrett K.P., Ford K.J., John T.M., Pace D., Yu L.M., et al., Immunogenicity of a tetravalent meningococcal glycoconjugate vaccine in infants: a randomized controlled trial, JAMA, 2008, 299, 173–184 http://dx.doi.org/10.1001/jama.2007.29-c [CrossRef]

  • [102] Yogev R., Arditi M., Chadwick E.G., Amer M.D., Sroka P.A., Haemophilus influenzae Type b Conjugate Vaccine (Meningicoccal Protein Conjugate): Immunogenicity and Safety at Various Doses, Paediatrics, 1990, 85, 690–693

  • [103] Jansen A.M., Hall L.J., Clare S., Goulding D., Holt K.E., Grant A.J., et al., A Salmonella Typhimurium-Typhi Genomic Chimera: A Model to Study Vi Polysaccharide Capsule Function In Vivo, PLoS Pathog., 2011, 7, e1002131 http://dx.doi.org/10.1371/journal.ppat.1002131 [CrossRef]

  • [104] Tacket C.O., Levine M.M., CVD 908, CVD 908-htrA, and CVD 909 live oral typhoid vaccines: a logical progression, Clin. Infect. Dis., 2007, 45, S20–23 http://dx.doi.org/10.1086/518135

  • [105] Kaur J., Jain S.K., Role of antigens and virulence factors of Salmonella enterica serovar Typhi in its pathogenesis, Microbiol. Res., 2012, 167, 199–210 http://dx.doi.org/10.1016/j.micres.2011.08.001 [CrossRef]

  • [106] Hohmann E.L., Oletta C.A., Killeen K.P., Miller S.I., phoP/phoQ-deleted Salmonella typhi (Ty800) is a safe and immunogenic single dose typhoid fever vaccine in volunteers, J. Infect. Dis., 1996, 173, 1408–1414 http://dx.doi.org/10.1093/infdis/173.6.1408 [CrossRef]

  • [107] Tacket C.O., Sztein M.B., Wasserman S.S., Losonsky G., Kotloff K.L., Wyant T.L., et al., Phase 2 clinical trial of attenuated Salmonella enterica serovar Typhi oral live vector vaccine CVD908-htrA in US volunteers, Infect. Immun., 2000, 68, 1196–1201 http://dx.doi.org/10.1128/IAI.68.3.1196-1201.2000

  • [108] Levine M.M., Tacket C.O., Sztein M.B., Host-Salmonella interaction: human trials, Microbes Infect., 2001, 3, 1271–1279 http://dx.doi.org/10.1016/S1286-4579(01)01487-3 [CrossRef]

  • [109] Levine M.M., Galen J.E., Tacket C.O., Barry E.M., Pasetti M.F., Sztein M.B., Attenuated strains of Salmonella enterica serovar Typhi as live oral vaccines against typhoid fever, In: Levine M.M., Kaper J.B., Rappuoli R., Liu M., Good M., (Eds), New generation vaccines, 3rd ed., Marcel Dekker, Inc., New York, 2004

  • [110] Jain S.K., M-01ZH09, an oral live attenuated Salmonella enterica serovar Typhi vaccine for the prevention of typhoid fever, Curr. Opin. Mol. Ther., 2009, 11, 565–571

  • [111] Nardelli-Haefliger D., Kraehenbuhl J.P., Curtiss R. III, Schodel F., Potts A., Kelly S., et al., Oral and rectal immunization of adult female volunteers with a recombinant attenuated Salmonella typhi vaccine strain, Infect. Immun., 1996, 64, 5219–5224

  • [112] Tacket C.O., Kelly S.M., Schodel F., Losonsky G., Nataro J.P., Edelman R., et al., Safety and immunogenicity in humans of an attenuated Salmonella typhi vaccine vector strain expressing plasmid-encoded hepatitis B antigens stabilized by the Asdbalanced lethal vector system, Infect. Immun., 1997, 65, 3381–3385

  • [113] Hindle Z., Chatfield S.N., Phillimore J., Bentley M., Johnson J., Cosgrove C.A., et al., Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type III secretion system (ssaV) mutations by immunization of healthy volunteers, Infect. Immun., 2002, 70, 3457–3467 http://dx.doi.org/10.1128/IAI.70.7.3457-3467.2002

  • [114] Chaudhuri R.R., Peters S.E., Pleasance S.J., Northen H., Willers C., Paterson G.K., et al., Comprehensive identification of Salmonella enterica serovar Typhimurium genes required for infection of BALB/c mice, PLoS Pathog., 2009, 5, e1000529 http://dx.doi.org/10.1371/journal.ppat.1000529 [CrossRef]

  • [115] Paterson G.K., Northen H., Cone D.B., Willers C., Peters S.E., Maskell D.J., Deletion of tolA in Salmonella typhimurium generates an attenuated strain with vaccine potential, Microbiology, 2009, 155, 220–228 http://dx.doi.org/10.1099/mic.0.021576-0 [CrossRef]

  • [116] Northen H., Paterson G.K., Constantino-Casas F., Bryant C.E., Clare S., Mastroeni P., et al., Salmonella enteric serovar Typhimurium mutants completely lacking the F(0)F(1) ATPase are novel live attenuated vaccine strains, Vaccine, 2010, 28, 940–949 http://dx.doi.org/10.1016/j.vaccine.2009.10.146

  • [117] Curtiss R. III, Wanda S.Y., Gunn B.M., Zhang X., Tinge S.A., Ananthnarayan V., et al., Salmonella enterica serovar Typhimurium strains with regulated delayed attenuation in vivo, Infect. Immun., 2009, 77, 1071–1082 http://dx.doi.org/10.1128/IAI.00693-08 [CrossRef]

  • [118] Curtiss R. III, Zhang X., Wanda S.Y., Konjufca V., Li Y., Gunn B., et al., Induction of host immune responses using Salmonella-vectored vaccines, In: Brogden K.A., Minion F.C., Cornick N., Staton T.B., Zhang Q., Nolan L.K., et al., (Eds.), Virulence mechanisms of bacterial pathogens, ASM Press, Washington, DC, 2007

  • [119] Hamid N., Jain S.K., Characterization of an outer membrane protein of Salmonella enterica serovar typhimurium that confers protection against typhoid, Clin. Vaccine Immunol., 2008, 9, 1461–1471 http://dx.doi.org/10.1128/CVI.00093-08 [CrossRef]

  • [120] Hamid N., Jain S.K., Immunogenic evaluation of a recombinant 49-kilodalton outer membrane protein of Salmonella typhi as a candidate for a subunit vaccine against typhoid, J. Infect. Dis. Immun., 2010, 2, 30–40

  • [121] Herman F.S., Shaun M.K., Carol C.W., James L.S., Diane K.W., Partha P.M. Development of a Bead Immunoassay to Measure Vi Polysaccharide-Specific Serum IgG after Vaccination with the Salmonella enteric Serovar Typhi Vi Polysaccharide, Clin. Vaccine Immunol., 2010, 17, 412–419 http://dx.doi.org/10.1128/CVI.00354-09 [CrossRef]

Comments (0)

Please log in or register to comment.