Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year

IMPACT FACTOR 2017: 0.764
5-year IMPACT FACTOR: 0.787

CiteScore 2017: 0.88

SCImago Journal Rank (SJR) 2017: 0.271
Source Normalized Impact per Paper (SNIP) 2017: 0.545

Open Access
See all formats and pricing
More options …
Volume 7, Issue 6


Volume 10 (2015)

Gender-based differences in the effect of dietary cholesterol in rats

Milan Marounek / Zdeněk Volek / Eva Skřivanová / Marian Czauderna
  • The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110, Jablonna, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-10-10 | DOI: https://doi.org/10.2478/s11535-012-0091-7


Male and female rats were fed diets supplemented with cholesterol and palm fat at 10 and 50 g/kg, respectively; serum, hepatic tissue and faeces were analysed. Cholesterol supplementation significantly increased serum and hepatic cholesterol both in male and female rats. Male and female rats fed the cholesterol-containing diet differed significantly in serum cholesterol concentration (2.48 µmol/mL vs 2.92 µmol/mL), concentration of serum triacylglycerols, but not in hepatic cholesterol concentration. The serum and hepatic cholesterol concentrations correlated non-significantly in male rats (r=0.491; P=0.063) and significantly in female rats (r=0.818; P<0.001). Cholesterol supplementation non-significantly decreased relative expression of the hepatic LDL receptor gene and significantly increased relative expression of the hepatic cholesterol 7α-hydroxylase gene in rats of both genders. The faeces of control rats contained similar amounts of cholesterol and bile acids. Cholesterol supplementation increased cholesterol concentration 10 times in the faeces of male rats and 12 times in faeces of female rats. The corresponding increases of bile acid concentration were much lower (83% in male rats and 108% in female rats). It can be concluded that the effects of cholesterol supplementation were more pronounced in female than in male rats.

Keywords: Rats; Gender; Cholesterol; Bile acids

  • [1] Shimizu-Ibuka A., Udagawa H., Kobayashi-Hattori K., Mura K., Tokue C., Takita T., et al., Hypocholesterolemic effect of peanut skin and its fractions: a case record of rats fed on a highcholesterol diet, Biosci. Biotech. Biochem., 2009, 73, 205–208 http://dx.doi.org/10.1271/bbb.80539CrossrefGoogle Scholar

  • [2] Spielmann J., Stangl G.I., Eder K., Dietary pea protein stimulates bile acid excretion and lowers hepatic cholesterol concentration in rats, J. Anim. Physiol. Anim. Nutr., 2008, 92, 683–693 http://dx.doi.org/10.1111/j.1439-0396.2007.00766.xCrossrefGoogle Scholar

  • [3] Taniguchi M., Nagao K., Inoue K., Imaizumi K., Cholesterol lowering effect of sulfur-containing amino acids added to a soybean protein diet in rats, J. Nutr. Sci. Vitaminol., 2008, 54, 448–453 http://dx.doi.org/10.3177/jnsv.54.448CrossrefGoogle Scholar

  • [4] Zhang J.L., Liu J.N., Li L., Xia W.S., Dietary chitosan improves hypercholesterolemia in rats fed high-fat diets, Nutr. Res., 2008, 28, 383–390 http://dx.doi.org/10.1016/j.nutres.2007.12.013CrossrefGoogle Scholar

  • [5] Shibata S., Hayakawa K., Egashira Y., Sanada H., Hypocholesterolemic mechanism of Chlorella: Chlorella, and its indigestible fraction enhance hepatic cholesterol catabolism through upregulation of cholesterol 7 alpha-hydroxylase in rats, Biosci. Biotech. Biochem., 2007, 71, 916–925 http://dx.doi.org/10.1271/bbb.60566CrossrefGoogle Scholar

  • [6] Radzki R.P., Bieńko M., Pierzynowski S.G., Effect of dietary alpha-ketoglutarate on blood lipid profile during hypercholesterolaemia in rats, Scand. J. Clin. Lab. Inv., 2009, 69, 175–180 http://dx.doi.org/10.1080/00365510802464633CrossrefGoogle Scholar

  • [7] Gershkovich P., Darlington J., Sivak O., Constantinides P. P., Wasan K. M., Inhibition of intestinal absorption of cholesterol by surfacemodified nanostructured aluminosilicate compounds, J. Pharm. Sci., 2009, 98, 2390–2400 http://dx.doi.org/10.1002/jps.21616CrossrefGoogle Scholar

  • [8] Marounek M., Volek Z., Skřivanová E., Tůma J., Dušková D., Comparative effect of amidated pectin and psyllium on cholesterol homeostasis in rats, Cent. Eur. J. Biol., 2010, 5, 299–303 http://dx.doi.org/10.2478/s11535-010-0014-4CrossrefGoogle Scholar

  • [9] Reena M.B., Gowda L.R., Lokesh B.R., Enhanced hypocholesterolemic effects of interesterified oils are mediated by upregulating LDL receptor and cholesterol 7-alpha-hydroxylase gene expression in rats, J. Nutr., 2011, 141, 24–30 http://dx.doi.org/10.3945/jn.110.127027CrossrefGoogle Scholar

  • [10] Horton J.D., Cuthbert J.A., Spady D.K., Regulation of hepatic 7α-hydroxylase expression and response to dietary cholesterol in the rat and hamster, J.Biol. Chem., 1995, 270, 5381–5387 http://dx.doi.org/10.1074/jbc.270.10.5381CrossrefGoogle Scholar

  • [11] Zhang Z., Wang H., Jiao R., Peng C., Wong Y.M., Yeung V.S.Y., et al., Choosing hamsters but not rats as a model for studying plasma cholesterol-lovering activity of functional foods, Mol. Nutr. Food Res., 2009, 53, 921–930 http://dx.doi.org/10.1002/mnfr.200800517CrossrefGoogle Scholar

  • [12] Terpstra A.H.M., Van Tintelen G., West C.E., The effect of semipurified diets containing different proportions of either casein or soybean protein on the concentration of cholesterol in whole serum, serum lipoproteins and liver in male and female rats, Atherosclerosis, 1982, 42, 85–95 http://dx.doi.org/10.1016/0021-9150(82)90129-0CrossrefGoogle Scholar

  • [13] Marounek M., Volek Z., Skřivanová E., Tůma J., Effects of amidated pectin alone and combined with cholestyramine on cholesterol homeostasis in rats fed a cholesterol-containing diet, Carb. Polym., 2010, 80, 989–992 http://dx.doi.org/10.1016/j.carbpol.2009.12.034CrossrefGoogle Scholar

  • [14] European Standard, EN 12822, Foodstuffs — Determination of vitamin E by high performance liquid chromatography — Measurement of α-, β-, γ-, and δ-tocopherols, European Committee for Standardization, Brussels, 2000 Google Scholar

  • [15] Folch J.M., Lees M., Sloane-Stanley G.H., A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem., 1957, 226, 497–509 Google Scholar

  • [16] Batta A.K., Salen G., Batta P., Tint G.S., Alberts D.S., Earnest, D.L., Simultaneous quantitation of fatty acids, sterols and bile acids in human stool by capillary gas-liquid chromatography, J. Chromatog. B, 2002, 775, 153–161 http://dx.doi.org/10.1016/S1570-0232(02)00289-1CrossrefGoogle Scholar

  • [17] Chen C.-W., Cheng H.H., A rice bran oil diet increases LDL-receptor and HMG-CoA reductase mRNA expressions and insulin sensitivity in rats with streptozotocin/nicotinamide-induced type diabetes, J. Nutr., 2006, 136, 1472–1476 Google Scholar

  • [18] Brown M.S., Goldstein J.L., A receptor — mediated pathway for cholesterol homeostasis, Science, 1986, 232, 34–47 http://dx.doi.org/10.1126/science.3513311CrossrefGoogle Scholar

  • [19] Livak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2-Δ Δ CT method, Methods, 2001, 25, 402–408 http://dx.doi.org/10.1006/meth.2001.1262Google Scholar

  • [20] Wolford S.T., Schroer R.A., Gohs F.X., Gallo P.P., Brodeck M., Falk H.B., et al., Reference range data base for serum chemistry and hematology values in laboratory rats, J. Toxicol. Environ. Health, 1986, 18, 161–188 http://dx.doi.org/10.1080/15287398609530859CrossrefGoogle Scholar

  • [21] Fernandez M.L., Wilson T.A., Conde K., Vergara-Jimenez M., Nicolosi R.J., Hamsters and guinea pigs differ in their plasma lipoprotein cholesterol distribution when fed diets varying in animal protein, soluble fiber, or cholesterol content, J. Nutr., 1999, 129, 1323–1332 Google Scholar

  • [22] Ng C.H., Yao X.Q., Huang Y., Chen Z.-Y., Oxidised cholesterol is more hypercholesterolaemic and atherogenic than non-oxidised cholesterol in hamsters, Brit. J. Nutr., 2008, 99, 749–755 http://dx.doi.org/10.1017/S0007114507842784CrossrefGoogle Scholar

  • [23] Chezem J., Furumoto E., Story J., Effects of resistant potato starch on cholesterol and bile acid metabolism in the rat, Nutr. Res., 1997, 17, 1671–1682 http://dx.doi.org/10.1016/S0271-5317(97)00174-7CrossrefGoogle Scholar

  • [24] Dongowski G., Huth M., Gebhardt E., Steroids in the intestinal tract of rats are affected by dietary-fibre-rich barley-based diets, Brit. J. Nutr., 2003, 90, 895–906 http://dx.doi.org/10.1079/BJN2003976CrossrefGoogle Scholar

  • [25] Carr T.P., Wood K.J., Hassel C.A., Bahl R., Gallaher D.D., Raising intestinal contents viscosity leads to greater excretion of neutral sterols but not bile acids in hamsters and rats, Nutr. Res., 2003, 23, 91–102 http://dx.doi.org/10.1016/S0271-5317(02)00476-1CrossrefGoogle Scholar

  • [26] Ness G.C., Gertz K.R., Hepatic HMG-CoA reductase expression and resistance to dietary cholesterol, Exp. Biol. Med., 2004, 229, 412–416 Google Scholar

  • [27] Chavla A., Saez E., Evans R.M., Don?t know much bile-ology, Cell, 2000, 103, 1–4 http://dx.doi.org/10.1016/S0092-8674(00)00097-0CrossrefGoogle Scholar

  • [28] Boll M., Weber L.W.D., Plana J., Stampfl A., In vivo and in vitro studies on the regulatory link between 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol 7 alpha-hydroxylase in rat liver, Z. Naturforsch. C, 1999, 54, 371–382 Google Scholar

About the article

Published Online: 2012-10-10

Published in Print: 2012-12-01

Citation Information: Open Life Sciences, Volume 7, Issue 6, Pages 980–986, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-012-0091-7.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Antonio López-Espinoza, Alma Gabriela Martínez Moreno, Virginia Gabriela Aguilera Cervantes, Elia Valdés Miramontes, Luis Alfonso Mojica Contreras, Monica Navarro-Meza, Claudia Patricia Beltrán-Miranda, and Ana Cristina Espinoza-Gallardo
Food and Nutrition Sciences, 2015, Volume 06, Number 14, Page 1307

Comments (0)

Please log in or register to comment.
Log in