Jump to ContentJump to Main Navigation
Show Summary Details

Open Life Sciences

formerly Central European Journal of Biology

IMPACT FACTOR increased in 2015: 0.814
5-year IMPACT FACTOR: 0.870

SCImago Journal Rank (SJR) 2015: 0.362
Source Normalized Impact per Paper (SNIP) 2015: 0.538
Impact per Publication (IPP) 2015: 0.929

Open Access
See all formats and pricing

Select Volume and Issue


Grazed Pannonian grassland beta-diversity changes due to C4 yellow bluestem

1Faculty of Agriculturale and Environmental Sciences, Institute of Plant Production, Szent István University, HU-2100, Gödöllő, Hungary

2Faculty of Agriculturale and Environmental Sciences, Department of Nature Conservation and Landscape Ecology, Szent István University, HU-2100, Gödöllő, Hungary

3Institute of Ecology and Botany, Centre for Ecological Research, Hungarian Academy of Sciences, HU-2163, Vácrátót, Hungary

4Department of Mathematics and Informatics, Corvinus University of Budapest, HU-1118, Budapest, Hungary

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Life Sciences. Volume 7, Issue 6, Pages 1055–1065, ISSN (Online) 2391-5412, DOI: 10.2478/s11535-012-0101-9, October 2012

Publication History

Published Online:


This study investigates how yellow bluestem affects biodiversity in a typical Pannonian grassland. Beta diversity (i.e. the finescale spatial variability of species compositions), was estimated by the realized number of species combinations sampled at various scales. Sampling was performed by a standard protocol. Presences of plant species were recorded along 52.2 m long belt transect of 1044 units of 0.05x0.05 m contiguous microquadrats. According to the results the massive presence of tested C4 grass significantly reduced species richness of the grassland. Beta diversity assessment revealed that 90% of species combinations were lost due to yellow bluestem invasion. Fine-scale spatial pattern analyses showed complete local extinctions of other species from microsites dominated by yellow bluestem. This local extinction is enhanced by the specific clonal architecture of this species and by the accumulation of litter. Other dominant grasses had no effect on fine scale diversity, i.e. they could coexist well with other elements of the local flora. This study presents currently developed microhabitat types, forecasts and also draws attention to the danger that climate warming will probably enhance the spread of this detrimental C4 species.

Keywords: Dominant grass; Plant neighbourhood diversity; Litter; Spatial association; Climate change

  • [1] Pärtel M., Bruun H.H., Sammul M., Biodiversity in temperate European grasslands: origin and conservation, Grassl. Sci. Eur., 2005, 10, 1–14

  • [2] Hopkins A., Del Prado A., Implications of climate change for grassland in Europe: impacts, adaptations and mitigation options: a review, Grass Forage Sci., 2007, 62, 118–126 http://dx.doi.org/10.1111/j.1365-2494.2007.00575.x [CrossRef]

  • [3] Conant R.T., Paustian K., Elliott E.T., Grassland management and conversion into grassland: effect on soil carbon, Ecol. Appl., 2001, 11, 343–355 http://dx.doi.org/10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2 [CrossRef]

  • [4] Zimmermann Z., Szabó G., Bartha S., Szentes Sz., Penksza K., Effects of sheep grazing on the nature conservation value of grazed and abandoned grasslands, AWETH, 2012, 7, 234–262, (in Hungarian)

  • [5] Borhidi A., (Ed.), Plant associations of Hungary, Akadémiai Kiadó, Budapest, 2003 (in Hungarian)

  • [6] Hobbs R.J., Arico S., Aronson J., Baron JS., Bridgewater P., Cramer V.A., et al., Novel ecosystems: theoretical and management aspects of the new ecological world order, Glob. Ecol. Biogeogr., 2006, 15, 1–7 http://dx.doi.org/10.1111/j.1466-822X.2006.00212.x [CrossRef]

  • [7] Illyés E., Bölöni J., (Eds,). Slope steppes, loess steppes and forest steppe meadows in Hungary, MTA ÖBKI, Budapest, 2007

  • [8] Kiss T., Lévai P., Ferencz Á., Szentes Sz., Hufnagel L., Nagy A., et al., Change of composition and diversity of species and grassland management between different grazing intensity in pannonian dry and wet grasslands, Appl. Ecol. Env. Res., 2011, 9, 197–230 [CrossRef]

  • [9] Szentes Sz., Dannhauser C., Coetzee R., Penksza K, Biomass productivity, nutrition content and botanical investigation of Hungarian Grey cattle pasture in Tapolca basin, AWETH, 2011, 7, 180–198 (in Hungarian)

  • [10] Szentes Sz., Penksza K., Orosz Sz., Dannhauser C., Forage managed investivagation on the Hungarian grey cattle pasture near Balaton Uplands, AWETH, 2011, 7, 180–198, (in Hungarian)

  • [11] Zólyomi B, The natural vegetation of Budapest and its surrounding. Loess vegetation. In: Pécsi M., (Ed.), Geography and biogeography of Budapest, Akadémiai Kiadó, Budapest, 1958, (in Hungarian)

  • [12] Zólyomi B., Fekete G., The Pannonian loess steppe: differentiation in space and time, Abstr. Bot., 1994, 18, 29–41

  • [13] Horváth A., The spatial organization of loess vegetation at Mezőföld, Hungary, Scientia Kiadó, Budapest, 2002 (in Hungarian)

  • [14] Bartha S., Composition, differentiation and dynamics of the grasslands in the forest steppe biome, In: Illyés E., Bölöni J., (Eds.), Slope steppes, loess steppes and forest steppe meadows in Hungary, MTA ÖBKI, Vácrátót, 2007

  • [15] Illyés E., Molnár Z., Csathó A., I., Bothriochloa ischaemum dominated steppes, In: Illyés E., Bölöni J., (Eds.), Slope steppes, loess steppes and forest steppe meadows in Hungary, MTA ÖBKI, Budapest, 2007

  • [16] Wittmer M.H.O.M., Auerswald K., Bai Y.F., Schaufele R., Schnyder H., Changes in the abundance of C3/C4 species of Inner Mongolia grassland: evidence from isotopic composition of soil and vegetation, Global Change Biol., 2010, 16, 605–616 http://dx.doi.org/10.1111/j.1365-2486.2009.02033.x [CrossRef]

  • [17] Catorci A., Ottaviani G., Cesaretti S., Functional and coenological changes under different long-term management conditions in Apennine meadows (central Italy), Phytocoenologia, 2011, 41, 45–58 http://dx.doi.org/10.1127/0340-269X/2011/0041-0481 [CrossRef]

  • [18] Catorci A., Cesaretti S., Gatti R., Ottaviani G., Abiotic and biotic changes due to spread of Brachypodium genuense (DC.) Roem. & Schult. in sub-Mediterranean meadows, Community Ecol., 2011, 12, 117–125 http://dx.doi.org/10.1556/ComEc.12.2011.1.14 [CrossRef]

  • [19] Harlen J, Celarier R., Richardson W., Studies on Old World Bluestem II, Oklahoma Agr. Exp. Sta. Tech. Bull. T-72, 1958

  • [20] Gabbard B.L., Fowler N.L., Wide ecological amplitude of diversity-reducing invasive grass, Biol. Invasions., 2007, 9, 149–160 http://dx.doi.org/10.1007/s10530-006-9012-x [CrossRef]

  • [21] Schmidt C.D., Hickman K.R., Channell R., Harmoney K., Stark W., Competitive abilities of native grasses and non-native (Bothriochloa spp.) grasses, Plant Ecol., 2008, 197, 69–80 http://dx.doi.org/10.1007/s11258-007-9361-2 [CrossRef]

  • [22] Szabó I., Kercsmár V., Hársvölgyiné Szőnyi É., Comparative study of loess steppe pastures with/ without domination of bluegrass (Bothriochloa ischaemum), Grassl. Stud., 2008, 6, 55–61 (in Hungarian)

  • [23] Pickett S.T.A., Cadenasso M.L., Bartha S., Implications from the Buell-Small Succession Study for vegetation restoration, Appl. Veg. Sci., 2001, 4, 41–52 http://dx.doi.org/10.1111/j.1654-109X.2001.tb00233.x [CrossRef]

  • [24] Davies K.F., Chesson P., Harrison S., Inouye B.D., Melbourne B.A., Rice K.J., Spatial heterogeneity explains the scale dependence of the native-exotic diversity relationship, Ecology, 2005, 86, 1602-0610

  • [25] Bassett I., Paynter Q., Hankin R., Beggs J.R., Characterising alligator weed (Alternanthera philoxeroides; Amaranthaceae) invasion at a northern New Zealand lake, New Zeal. J. Ecol., 2012, 36, 216–222

  • [26] Stohlgren T.J., Jarnevich C., Geneva W., Ching G.W., Evangelista P.H.E., Scale and plant invasions: a theory of biotic acceptance, Preslia, 2006, 78, 405–426

  • [27] During H.J., Willems J.H., Diversity models applied to a chalk grassland, Vegetatio, 1984, 57, 103–114 http://dx.doi.org/10.1007/BF00047305 [CrossRef]

  • [28] Willems J.H., Peet R.K., Bik L., Changes in chalk-grassland structure and species richness resulting from selective nutrient additions, J. Veg. Sci., 1993, 4, 203–212 http://dx.doi.org/10.2307/3236106 [CrossRef]

  • [29] Canals R.-M., Sebastiá M.-T., Analyzing mechanisms regulating diversity in rangelands through comparative studies: a case in the southwestern Pyrennees, Biodivers. Conserv., 2000, 9, 965–984 http://dx.doi.org/10.1023/A:1008967903169 [CrossRef]

  • [30] Juhász-Nagy P., Podani J., Information theory methods for the study of spatial processes and succession, Vegetatio, 1983, 51, 129–140 http://dx.doi.org/10.1007/BF00129432 [CrossRef]

  • [31] Bartha S., Czárán T., Podani J., Exploring plant community dynamics in abstract coenostate spaces, Abstr. Bot., 1998, 22, 49–66

  • [32] Virágh K., Horváth A., Bartha S., Somodi I., A multiscale methodological approach novel in monitoring the effectiveness of grassland management, Community Ecol., 2008, 9, 237–246 http://dx.doi.org/10.1556/ComEc.9.2008.2.13 [CrossRef]

  • [33] Bartha S., Campetella G., Kertész M., Hanh I., Kröel-Dulay Gy., Rédei T., et al., Beta diversity and community differentiation in dry perennial sand grassland, Ann. di Bot., 2011, 1, 9–18

  • [34] Erdős L., Gallé R., Bátori Z., Papp M., Körmöczi L., Properties of shrubforest edges:a case study from South Hungary, Cent. Eur. J. Biol., 2011, 6, 639–658 http://dx.doi.org/10.2478/s11535-011-0041-9 [CrossRef]

  • [35] Bartha S., Kertész M., The importance of neutral-models in detecting interspecific spatial associations from’ trainsect’ data, Tiscia, 1998, 31, 85–98

  • [36] Bartha S., Campetella G., Canullo R., Bódis J., Mucina L., On the Importance of Fine-Scale Spatial Complexity in Vegetation Restoration Studies, Int. J. Ecol. Environ. Sci., 2004, 30, 101–116

  • [37] Bartha S., Zimmermann Z., Horváth A., Szentes Sz, Sutyinszki Zs., Szabó G., et al., High resolution vegetation assessment with beta-diversity — a moving window approach, Agr. Informat., 2011, 2, 1–9

  • [38] Juhász-Nagy P., Notes on compositional divesity, Hydrobiologia, 1993, 249, 173–182 http://dx.doi.org/10.1007/BF00008852 [CrossRef]

  • [39] Roxburgh S.H., Chesson P., A new method for detecting species associations with spatially autocorrelated data, Ecology, 1998, 79, 2180–2192 http://dx.doi.org/10.1890/0012-9658(1998)079[2180:ANMFDS]2.0.CO;2 [CrossRef]

  • [40] Baer S.G., Blair J.M., Collins S.L., Knapp A.K., Plant community responses to resource availability and heterogeneity during restoration, Oecologia, 2004, 139, 617–629 http://dx.doi.org/10.1007/s00442-004-1541-3 [CrossRef]

  • [41] McCain K.N.S., Baer S.G., Blair J.M., Wilson G.W.T., Dominant Grasses Suppress Local Diversity in Restored Tallgrass Prairie, Restor. Ecol., 2010, 18, 40–49 http://dx.doi.org/10.1111/j.1526-100X.2010.00669.x [CrossRef]

  • [42] Wilsey B.J., Productivity and subordinate species response to dominant grass species and seed source during restoration, Restor. Ecol., 2010, 18, 628–637 http://dx.doi.org/10.1111/j.1526-100X.2008.00471.x [CrossRef]

  • [43] Virágh K., Horváth F., Bokros S., Modelling the regeneration dynamics of a Hungarian loess steppe community, In: Demeter A., Peregovits L., (Eds.), ’Ecological processes: Current status and Perspectives’, Abstracts of EURECO’95, 7th European Ecological Congress, Budapest, August 20–25, 1995, Hungary

  • [44] Török P., Deák B., Vida E., Valkó O., Lengyel S., Tóthmérész B., Restoring grassland biodiversity: sowing low-diversity seed mixtures can lead to rapid favourable changes, Biol. Conserv., 2010, 143, 806–812 http://dx.doi.org/10.1016/j.biocon.2009.12.024 [CrossRef]

  • [45] Török P., Vida E., Deák B., Lengyel S., Tóthmérész B., Grassland restoration on former croplands in Europe: an assessment of applicability of techniques and costs, Biodiv. Conserv., 2011, 20, 2311–2332 http://dx.doi.org/10.1007/s10531-011-9992-4 [CrossRef]

  • [46] Házi J., Bartha S., Szentes Sz., Penksza K., Seminatural grassland management by mowing of Calamagrostis epigeios in Hungary, Plant Biosyst, 2011, 145, 699–707 http://dx.doi.org/10.1080/11263504.2011.601339 [CrossRef]

  • [47] Oborny B., Bartha S., Clonality in plant community — an overview, Abstr. Bot., 1995, 19, 115–127

  • [48] van der Maarel E., (Ed.), Vegetation ecology, Blackwell, Oxford, 2005

  • [49] Holdredge C., Bertness M.D., Litter legacy increases the competitive advantage of invasive Phragmites australis in New England wetlands, Biol. Invasions, 2011, 13, 423–433 http://dx.doi.org/10.1007/s10530-010-9836-2 [CrossRef]

  • [50] Facelli J.M., Pickett S.T.A., Plant litter: its dynamics and effects on plant community structure, Bot. Rev., 1991, 57, 1–32 http://dx.doi.org/10.1007/BF02858763 [CrossRef]

  • [51] Xiong S., Nilsson C., The effects of plant litter on vegetation: a meta-analysis, J. Ecol., 1999, 87, 984–994 http://dx.doi.org/10.1046/j.1365-2745.1999.00414.x [CrossRef]

  • [52] Ruprecht E., Enyedi M.Z., Eckstein R.L., Donath T.W., Restorative removal of plant litter and vegetation 40 years after abandonment enhances re-emergence of steppe grassland vegetation, Biol. Conserv., 2010, 143, 449–456 http://dx.doi.org/10.1016/j.biocon.2009.11.012 [CrossRef]

  • [53] Deák B., Valkó O., Kelemen A., Török P., Miglécz T., Ölvedi T., et al., Litter and graminoid biomass accumulation suppresses weedy forbs in grassland restoration, Plant Biosyst, 2011, 145, 730–737 http://dx.doi.org/10.1080/11263504.2011.601336 [CrossRef]

  • [54] Kalapos T., C3 and C4 grasses of Hungary: their environmental requirements, phenology and role in the vegetation, Abstr. Bot., 1991, 15, 83–88

  • [55] Szente K, Nagy Z, Tuba Z., Fekete G., Photosynthesis of Festuca rupicola and Bothriochloa ischaemum under degradation and cutting pressure in a semiarid loess grassland, Photosynthetica, 1996, 32, 399–407

  • [56] Kalapos T., Mojzes A., What is the future of C4 grasses in temperate grasses during glocal changes?, In: Kröel-Dulay Gy., Kalapos T., Mojzes A., (Eds.), Soil-vegetation-climate interactions, ÖBKI, Vácrátót, 2008, (in Hungarian)

  • [57] Mojzes A., Kalapos T., Leaf gas exchange responses to abrupt changes in light intensity for two invasive and two non-invasive C4 grass species, Environ. Exp. Bot., 2008, 64, 232–238 http://dx.doi.org/10.1016/j.envexpbot.2008.06.003 [CrossRef]

  • [58] Johnstone I.M., Plant invasion windows: A time-based classification of invasion potential, Biol. Rev., 1986, 61, 369–394 http://dx.doi.org/10.1111/j.1469-185X.1986.tb00659.x [CrossRef]

  • [59] Kollmann J., Regeneration window for fleshy-fruited plants during scrub development on abandoned grassland, EcoScience, 1995, 2, 213–222

  • [60] Bartha S., Meiners S.J., Pickett S.T.A., Cadenasso M.L., Plant colonization windows in a mesic old field succession, Appl Veg Sci, 2003, 6, 205–212 [CrossRef]

  • [61] Knapp A.K., Briggs J.M., Hartnett D.C., Collins S.L. (Eds.), Grassland dynamics. Long-term ecological research in tallgrass prairie, Oxford Univ. Press, N.Y, 1998

  • [62] Auerswald K., Wittmer M.H.O.M., Bai Y., Yang H., Taube F., Susenbeth A., et al., C4 abundance in an Inner Mongolia grassland system is driven by temperature-moisture interaction, not grazing pressure, Basic Appl. Ecol., 2012, 13, 67–75 http://dx.doi.org/10.1016/j.baae.2011.11.004 [CrossRef]

  • [63] Follak S., Potential distribution and environmental threat of Pueraria lobata, Cent. Eur. J. Biol., 2011, 6, 457–469 http://dx.doi.org/10.2478/s11535-010-0120-3 [CrossRef]

  • [64] Šilc U., Vrbničanin S., Božić D., Čarni A., Stevanović Z.D., Alien plant species and factors of invasiveness of anthropogenic vegetation in the Northwestern Balkans — a phytosociological approach, Cent. Eur. J. Biol., 2012, 7, 720–730 http://dx.doi.org/10.2478/s11535-012-0049-9 [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Sándor Bartha, Szilárd Szentes, András Horváth, Judit Házi, Zita Zimmermann, Csaba Molnár, István Dancza, Katalin Margóczi, Róbert W. Pál, Dragica Purger, Dávid Schmidt, Miklós Óvári, Cecília Komoly, Zsuzsanna Sutyinszki, Gábor Szabó, András István Csathó, Melinda Juhász, Károly Penksza, Zsolt Molnár, and Rob Marrs
Applied Vegetation Science, 2014, Volume 17, Number 2, Page 201

Comments (0)

Please log in or register to comment.