Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 8, Issue 1


Volume 10 (2015)

Comparison of signal peptides for efficient protein secretion in the baculovirus-silkworm system

Yasuhiko Soejima / Jae Lee / Yudai Nagata / Hiroaki Mon / Kazuhiro Iiyama / Hajime Kitano / Michiya Matsuyama / Takahiro Kusakabe
Published Online: 2012-11-21 | DOI: https://doi.org/10.2478/s11535-012-0112-6


The baculovirus-silkworm expression system is widely used as a mass production system for recombinant secretory proteins. However, the final yields of some recombinant proteins are not sufficient for industrial use. In this study, we focused on the signal peptide as a key factor for improving the efficiency of protein production. Endoplasmic reticulum (ER) translocation of newly synthesized proteins is the first stage of the secretion pathway; therefore, the selection of an efficient signal peptide would lead to the efficient secretion of recombinant proteins. The Drosophila Bip and honeybee melittin signal peptides have often been used in this system, but to the best of our knowledge, there has been no study comparing secretion efficiency between exogenous and endogenous signal peptides. In this study we employed signal peptides from 30K Da and SP2 proteins as endogenous signals, and compared secretion efficiency with those of exogenous or synthetic origins. We have found that the endogenous secretory signal from the 30K Da protein is the most efficient for recombinant secretory protein production in the baculovirus-silkworm expression system.

Keywords: Baculovirus expression system; Silkworm; Signal peptide; Secretion; Protein purification

  • [1] O’Reilly D.R., Miller L., Luckow VA., Baculovirus Expression Vectors: a Laboratory Manual, Oxford University Press, New York, 1992 Google Scholar

  • [2] Jarvis D.L., Summers M.D., Glycosylation and secretion of human tissue plasminogen activator in recombinant baculovirus-infected insect cells, Mol. Cell. Biol., 1989, 9, 214–223 CrossrefGoogle Scholar

  • [3] Azzouz N., Kedees M.H., Gerold P., Becker S., Dubremetz J.F., Klenk H.D., et al, An early step of glycosylphosphatidyl-inositol anchor biosynthesis is abolished in lepidopteran insect cells following baculovirus infection, Glycobiology, 2000, 10, 177–183 http://dx.doi.org/10.1093/glycob/10.2.177CrossrefGoogle Scholar

  • [4] Olczak M., Olczak T., Expression and purification of active plant diphosphonucleotide phosphatase/phosphodiesterase from baculovirus-infected insect cells, Protein Expr. Purif., 2005, 39, 116–123 http://dx.doi.org/10.1016/j.pep.2004.09.010CrossrefGoogle Scholar

  • [5] Olczak M., Olczak T., Comparison of different signal peptides for protein secretion in nonlytic insect cell system, Anal. Biochem., 2006, 359, 45–53 http://dx.doi.org/10.1016/j.ab.2006.09.003CrossrefGoogle Scholar

  • [6] Futatsumori-Sugai M., Tsumoto K., Signal peptide design for improving recombinant protein secretion in the baculovirus expression vector system, Biochem. Biophys. Res. Commun., 2010, 391, 931–935 http://dx.doi.org/10.1016/j.bbrc.2009.11.167CrossrefGoogle Scholar

  • [7] Gierasch L.M., Signal sequences, Biochemistry, 1989, 28, 923–930 http://dx.doi.org/10.1021/bi00429a001CrossrefGoogle Scholar

  • [8] Walter P., Johnson A.E., Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane, Annu. Rev. Cell. Biol., 1994, 10, 87–119 http://dx.doi.org/10.1146/annurev.cb.10.110194.000511CrossrefGoogle Scholar

  • [9] Watson M.E., Compilation of published signal sequences, Nucl. Acids. Res., 1984, 12, 5154–5164 Google Scholar

  • [10] MacIntyre S., Eschbach M.L., Mutschler B., Export incompatibility of N-terminal basic residues in a mature polypeptide of Escherichia coli can be alleviated by optimising the signal peptide, Mol. Gen. Genet., 1990, 221, 464–474 Google Scholar

  • [11] Kawakami N., Lee J.M., Mon H., Kubo Y., Banno Y., Kawaguchi Y., et al., Efficient protein expression in Bombyx mori larvae of the strain d17 highly sensitive to B. mori nucleopolyhedrovirus, Mol. Biotechnol., 2008, 40, 180–185 http://dx.doi.org/10.1007/s12033-008-9074-3CrossrefGoogle Scholar

  • [12] Sano K., Maeda K., Oki M., Maeda Y., Enhancement of protein expression in insect cells by a lobster tropomyosin cDNA leader sequence, FEBS. Lett., 2002, 532, 143–146 http://dx.doi.org/10.1016/S0014-5793(02)03659-1CrossrefGoogle Scholar

  • [13] Motohashi T., Shimojima T., Fukagawa T., Maenaka K., Park E.Y., Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system, Biochem. Biophys. Res. Commun., 2005, 326, 564–569 http://dx.doi.org/10.1016/j.bbrc.2004.11.060CrossrefGoogle Scholar

  • [14] Lee J.M., Kawakami N., Mon H., Mitsunobu H., Iiyama K., Ninaki S., et al., Establishment of a Bombyx mori nucleopolyhedrovirus (BmNPV) hyper-sensitive cell line from the silkworm e21 strain, Biotechnol. Lett., 2012, (in press), DOI: 10.1007/s10529-012-0971-y Google Scholar

  • [15] Zehr B., Savin T., Hall R., A one step low background Coomasie staining procedure for polyacrylamide gels, Anal. Bioche, 1989, 182, 157–159 http://dx.doi.org/10.1016/0003-2697(89)90734-3CrossrefGoogle Scholar

  • [16] Tessier D.C., Thomas D.Y., Khouri H.E., Laliberté F., Vernet T., Enhanced secretion from insect cells of a foreign protein fused to the honeybee melittin signal peptide, Gene, 1991, 98, 177–183 http://dx.doi.org/10.1016/0378-1119(91)90171-7CrossrefGoogle Scholar

  • [17] Jarvis D.L., Summers M.D., Garcia A. Jr., Bohlmeyer D.A., Influence of different signal peptide and prosequences on expression and secretion of human tissue plasminogen activator in the baculovirus system, J. Biol. Chem., 1993, 268, 16754–16762 Google Scholar

  • [18] Haas I.G., Wabl M., Immunoglobulin heavy chain binding protein, Nature, 1983, 306, 387–389 http://dx.doi.org/10.1038/306387a0CrossrefGoogle Scholar

  • [19] Munro S., Pelham H.R., An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein, Cell, 1986, 46, 291–300 http://dx.doi.org/10.1016/0092-8674(86)90746-4CrossrefGoogle Scholar

  • [20] Ting J., Wooden S.K., Kriz R., Kelleher K., Kaufman R.J., Lee A.S., The nucleotide sequence encoding the hamster 78-kDa glucose-regulated protein (GRP78) and its conservation between hamster and rat, Gene, 1987, 55, 147–152 http://dx.doi.org/10.1016/0378-1119(87)90258-7CrossrefGoogle Scholar

  • [21] Habermann E., Bee and wasp venoms, Science, 1972, 177, 314–322 http://dx.doi.org/10.1126/science.177.4046.314CrossrefGoogle Scholar

  • [22] Vlasak R., Unger-Ullmann C., Kreil G., Frischauf A.M., Nucleotide sequence of cloned cDNA coding for honeybee prepromelittin, Eur. J. Biochem., 1983, 135, 123–126 http://dx.doi.org/10.1111/j.1432-1033.1983.tb07626.xCrossrefGoogle Scholar

  • [23] Miyakawa K., Hatsuzawa K., Kurokawa T., Asada M., Kuroiwa T., Imamura T., A hydrophobic region locating at the center of fibroblast growth factor-9 is crucial for its secretion, J. Biol. Chem., 1999, 274, 29352–29357 http://dx.doi.org/10.1074/jbc.274.41.29352CrossrefGoogle Scholar

  • [24] Miyakawa K., Imamura T., Secretion of FGF-16 requires an uncleaved bipartite signal sequence, J. Biol. Chem., 2003, 278, 35718–35724 http://dx.doi.org/10.1074/jbc.M300690200CrossrefGoogle Scholar

About the article

Published Online: 2012-11-21

Published in Print: 2013-01-01

Citation Information: Open Life Sciences, Volume 8, Issue 1, Pages 1–7, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-012-0112-6.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jian Xu, Tatsuya Kato, and Enoch Y. Park
International Journal of Molecular Sciences, 2019, Volume 20, Number 17, Page 4228
Hina Satone, Eriko Akahoshi, Aiko Nakamura, Jae Man Lee, Masato Honda, Yohei Shimasaki, Shun-ichiro Kawabata, Takahiro Kusakabe, and Yuji Oshima
The Journal of Toxicological Sciences, 2013, Volume 38, Number 6, Page 885
Yurie Kinoshita, Jian Xu, Akitsu Masuda, Kosuke Minamihata, Noriho Kamiya, Hiroaki Mon, Ryosuke Fujita, Takahiro Kusakabe, and Jae Man Lee
Protein Expression and Purification, 2019, Volume 159, Page 69
Samira Bahrami, Mahmoud Ghaffari, and Alireza Zomorodipour
Biotechnology Letters, 2019, Volume 41, Number 3, Page 347
Yoshiki Morifuji, Jian Xu, Noriko Karasaki, Kazuhiro Iiyama, Daisuke Morokuma, Masato Hino, Akitsu Masuda, Takumi Yano, Hiroaki Mon, Takahiro Kusakabe, and Jae Man Lee
Molecular Biotechnology, 2018
Kai Yu, Yang Yu, Xiaoyan Tang, Huimin Chen, Junyu Xiao, and Xiao-Dong Su
Protein & Cell, 2016, Volume 7, Number 5, Page 373
Qian-Jin Zhou, Yi Yang, Xiao-Lu Guo, Li-Jun Duan, Xue-Qiu Chen, Bao-Long Yan, Hong-Li Zhang, and Ai-Fang Du
Experimental Parasitology, 2014, Volume 145, Page 87
Jian Xu, Hiroaki Mon, Takahiro Kusakabe, Zhiqing Li, Li Zhu, Kazuhiro Iiyama, Atsushi Masuda, Takumi Mitsudome, and Jae Man Lee
Applied Microbiology and Biotechnology, 2013, Volume 97, Number 24, Page 10435
Yudai Nagata, Jae Man Lee, Hiroaki Mon, Shigeo Imanishi, Sun Mee Hong, Shoji Komatsu, Yuji Oshima, and Takahiro Kusakabe
Biotechnology Letters, 2013, Volume 35, Number 7, Page 1009
Mai Fukushima, Kazuhiro Iiyama, Jun Yamashita, Masutaka Furue, Gaku Tsuji, Shigeo Imanishi, Hiroaki Mon, Jae Man Lee, and Takahiro Kusakabe
Preparative Biochemistry and Biotechnology, 2013, Volume 43, Number 6, Page 565

Comments (0)

Please log in or register to comment.
Log in