Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 8, Issue 10


Volume 10 (2015)

New perspectives on antibacterial drug research

Joanna Ziemska
  • Laboratory of Biologically Active Compounds, National Institute of Public Health — National Institute of Hygiene, 00-791, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aleksandra Rajnisz
  • Laboratory of Biologically Active Compounds, National Institute of Public Health — National Institute of Hygiene, 00-791, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jolanta Solecka
  • Laboratory of Biologically Active Compounds, National Institute of Public Health — National Institute of Hygiene, 00-791, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-08-02 | DOI: https://doi.org/10.2478/s11535-013-0209-6


Bacterial resistance to commonly used antibiotics is constantly increasing. Bacteria particularly dangerous for human life are methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium and fluoroquinolone-resistant Pseudomonas aeruginosa. Hence, there is an incessant need for developing compounds with new modes of action and seeking alternate drug targets. In this review, the authors discuss the current situation of antibacterial medicines and present data on new antibiotic targets. Moreover, alternatives to antibiotics, such as bacteriophages, antimicrobial peptides and monoclonal antibodies, are presented. The authors also draw attention to the valuable features of natural sources in developing antibacterial compounds. The need to prevent and control infections as well as the reasonable use of currently available antibiotics is also emphasized.

Keywords: Bacterial resistance; Antibacterial compound; Drug discovery; Target; Antimicrobial peptides

  • [1] Butler M.S., Cooper M.A., Antibiotics in the clinical pipeline in 2011, J. Antibiot., 2011, 64, 413–425 http://dx.doi.org/10.1038/ja.2011.44CrossrefGoogle Scholar

  • [2] Diaz Högberg L., Heuer O., Antimicrobial resistance surveillance in Europe 2011, European Centre for Disease Prevention and Control, Surveillance Report, 2012, http://www.ecdc.europa.eu/en/publications/Publications/antimicrobial-resistancesurveillance-europe-2011.pdf Google Scholar

  • [3] Livermore D.M., Discovery research: the scientific challenge of finding new antibiotics, J. Antimicrob. Chemother., 2011, 66, 1941–1944 http://dx.doi.org/10.1093/jac/dkr262CrossrefGoogle Scholar

  • [4] Brötz-Oesterhelt H., Sass P., Postgenomic strategies in antibacterial drug discovery, Future Microbiol., 2010, 5, 1553–1579 http://dx.doi.org/10.2217/fmb.10.119CrossrefGoogle Scholar

  • [5] O’Shea R., Moser H.E., Physicochemical properties of antibacterial compounds: implications for drug discovery, J. Med.Chem., 2008, 51, 2871–2878 http://dx.doi.org/10.1021/jm700967eCrossrefGoogle Scholar

  • [6] McCluskey S.M., Knapp Ch.W., Predicting antibiotic resistance, not just for quinolones, Front. Microbiol., 2011, 2, 1–2 http://dx.doi.org/10.3389/fmicb.2011.00178CrossrefGoogle Scholar

  • [7] Peterson L.R., Bad Bugs, No Drugs: No ESKAPE revisited, Clin. Infect. Dis., 2009, 49, 992–993 http://dx.doi.org/10.1086/605539CrossrefGoogle Scholar

  • [8] Rice L.B., Federal funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE, J. Inf. Dis., 2008, 197, 1079–1081 http://dx.doi.org/10.1086/533452CrossrefGoogle Scholar

  • [9] Master R.N., Deane J., Opiela C., Sahm D.F., Recent trends in resistance to cell envelopeactive antibacterial agents among key bacterial pathogens, Ann.N.Y.Acad.Sci, 2013, 1277, 1–7 http://dx.doi.org/10.1111/nyas.12022CrossrefGoogle Scholar

  • [10] Perez F., Van Duin D., Carbapenem-resistant Enterobacteriaceae: A menace to our most vulnerable patients, Cleve Clin J Med., 2013, 80, 225–33 http://dx.doi.org/10.3949/ccjm.80a.12182CrossrefGoogle Scholar

  • [11] Theuretzbacher U., Future antibiotics scenarios: is the tide starting to turn? Int. J. Antimicrob. Ag., 2009, 34, 15–20 http://dx.doi.org/10.1016/j.ijantimicag.2009.02.005CrossrefGoogle Scholar

  • [12] Boucher H.W., Talbot G.H., Bradley J.S., Edwards J.E., Gibert D., Rice L.B., et al., Bad bugs, no drugs: No ESKAPE! An update from the infectious diseases society of America, Clin. Infect. Dis., 2009, 48, 1–12 http://dx.doi.org/10.1086/595011CrossrefGoogle Scholar

  • [13] Newman D.J., Cragg G.M., Natural products as sources of new drugs over the 30 years from 1981 to 2010, J. Nat. Prod., 2012, 75, 311–335 http://dx.doi.org/10.1021/np200906sGoogle Scholar

  • [14] Devasahayam G., Scheld W.M., Hoffman P.S., Newer antibacterial drugs for a new century, Expert Opin. Investig. Drugs, 2010, 19, 215–234 http://dx.doi.org/10.1517/13543780903505092CrossrefGoogle Scholar

  • [15] Bassetti M., Ginocchio F., Mikulska M., Taramasso L., Giacobbe D.R., Will new antimicrobials overcome resistance among Gram-negatives? Expert Rev. Anti Infect. Ther., 2011, 9, 909–922 http://dx.doi.org/10.1586/eri.11.107CrossrefGoogle Scholar

  • [16] Goodman J.J., Martin S.I., Critical appraisal of ceftaroline in the management of communityacquired bacterial pneumonia and skin infections, Ther. Clin. Risk Manag., 2012, 8, 149–156 Google Scholar

  • [17] Zamorano L., Juab C., Fernandez-Olmos A., Ge Y., Canton R., Oliver A., Activity of the new cephalosporin CXA-101 (FR264205) against Pseudomonas aeruginosa isolates from chronically-infected cystic fibrosis patients, Clin. Microbiol. Infect., 2010, 16, 1482–1487 http://dx.doi.org/10.1111/j.1469-0691.2010.03130.xCrossrefGoogle Scholar

  • [18] Sader H.S., Rhomberg P.R., Farrell D.J., Jones R.N., Antimicrobial activity of CXA-101, a novel cephalosporin tested in combination with tazobactam against Enterobacteriaceae, Pseudomonas aeruginosa, and Bacteroides fragilis strains having various resistance phenotypes, Antimicrob. Agents Chemother., 2011, 55, 2390–2394 http://dx.doi.org/10.1128/AAC.01737-10CrossrefGoogle Scholar

  • [19] Blais J., Lewis S.R., Krause K.M., Benton B.M., Antistaphylococcal activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic, Antimicrob. Agents Chemother., 2012, 56, 1584–1587 http://dx.doi.org/10.1128/AAC.05532-11CrossrefGoogle Scholar

  • [20] Goyal K., Gautam V., Ray P. Doripenem vs meropenem against Pseudomonas and Acinetobacter. Indian J. Med. Microbiol., 2012, 30, 350–351 http://dx.doi.org/10.4103/0255-0857.99502CrossrefGoogle Scholar

  • [21] Ueda Y., Kanazawa K., Eguchi K., Takemoto K., Eriguchi Y., Sunagawa M., In vitro and in vivo antibacterial activities of SM-216601, a new broadspectrum parenteral carbapenem, Antimicrob. Agents Chemother., 2005, 49, 4185–4196 http://dx.doi.org/10.1128/AAC.49.10.4185-4196.2005Google Scholar

  • [22] Kobayashi R., Konomi M., Hasegawa K., Morozumi M., Sunakawa K., Ubukata K., In vitro activity of tebipenem, a new oral carbapenem antibiotic, against penicillin-nonsusceptible Streptococcus pneumoniae, Antimicrob. Agents Chemother., 2005, 49, 889–894 http://dx.doi.org/10.1128/AAC.49.3.889-894.2005CrossrefGoogle Scholar

  • [23] Sato N., Kijima K., Koresawa T., Mitomi N., Morita J., Suzuki H., et al., Population pharmacokinetics of tebipenem pivoxil (ME1211), a novel oral carbapenem antibiotic, in pediatric patients with otolaryngological infection or pneumonia., Drug Metab Pharmacokinet., 2008, 23, 434–446 http://dx.doi.org/10.2133/dmpk.23.434CrossrefGoogle Scholar

  • [24] Kurazono M., Ida T., Yamada K., Hirai Y., Maruyama T., Shitara E., et al., In vitro activities of ME1036 (CP5609), a novel parenteral carbapenem, against Methicillin-Resistant Staphylococci, Antimicrob. Agents Chemother., 2004, 48, 2831–2837 http://dx.doi.org/10.1128/AAC.48.8.2831-2837.2004CrossrefGoogle Scholar

  • [25] Bassetti M., Ginoccio F., Mikulska M., New treatment options against Gram-negative organisms, Crit. Care, 2011, 15, 215 http://dx.doi.org/10.1186/cc9997CrossrefGoogle Scholar

  • [26] Shah P.M., Isaacs R.D., Ertapenem, the first of a new group of carbapenems, J. Antimicrob. Chemother., 2003, 52, 538–542 http://dx.doi.org/10.1093/jac/dkg404CrossrefGoogle Scholar

  • [27] Page M.G.P., Dantier C., Desarbre E., In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant Gramnegative Bacilli, Antimicrob. Agents Chemother., 2010, 54, 2291–2302 http://dx.doi.org/10.1128/AAC.01525-09Google Scholar

  • [28] Hofer B., Dantier C., Gebhardt K., Desarbre E., Schmitt-Hoffmann A., Page M.G., Combined effects of the siderophore monosulfactam BAL30072 and carbapenems on multidrug-resistant Gramnegative bacilli, J. Antimicrob. Chemother., 2013, 68, 1120–1129 http://dx.doi.org/10.1093/jac/dks527Google Scholar

  • [29] Livermore D.M., Mushtaq S., Warner M., Activity of BAL30376 (monobactam BAL19764 + BAL29880 + clavulanate) versus Gramnegative bacteria with characterized resistance mechanisms, J. Antimicrob. Chemother., 2010, 65, 2382–2395 http://dx.doi.org/10.1093/jac/dkq310Google Scholar

  • [30] Ishii Y., Eto M., Mano Y., In vitro potentiation of carbapenems with ME1071, a novel metallo-β-lactamase inhibitor, against metallo-β-lactamaseproducing Pseudomonas aeruginosa clinical isolates, Antimicrob. Agents Chemother., 2010, 54, 3625–362 http://dx.doi.org/10.1128/AAC.01397-09CrossrefGoogle Scholar

  • [31] Levasseur P., Girard A.M., Claudon M., Goossens H., In vitro antibacterial activity of the Ceftazidime-Avibactam (NXL104) combination against Pseudomonas aeruginosa clinical isolates, Antimicrob. Agents Chemother., 2012, 56, 1606–1608 http://dx.doi.org/10.1128/AAC.06064-11CrossrefGoogle Scholar

  • [32] Hirsch E.B., Ledesma K.R., Chang K.T., Schwartz M.S., Motyl M.R., Tama V.H., In vitro activity of MK-7655, a novel β-lactamase inhibitor, in combination with imipenem against carbapenem-resistant Gram-negative bacteria, Antimicrob. Agents Chemother., 2012, 56, 3753–3757 http://dx.doi.org/10.1128/AAC.05927-11CrossrefGoogle Scholar

  • [33] Noel G.J., Draper M.P., Hait H., Tanaka S.K., Arbeit R.D., A randomized, evaluator-blind, phase 2 study comparing the safety and efficacy of omadacycline to those of linezolid for treatment of complicated skin and skin structure infections, Antimicrob. Agents Chemother., 2012, 56, 5650–5654 http://dx.doi.org/10.1128/AAC.00948-12CrossrefGoogle Scholar

  • [34] Noskin G.A., Tigecycline: A new glycylcycline for treatment of serious infections, Clin. Inf. Dis., 2005, 41, S303–S314 http://dx.doi.org/10.1086/431672CrossrefGoogle Scholar

  • [35] Rubinchik E., Schneider T., Elliott M., Mechanism of action and limited cross-resistance of new lipopeptide MX-2401, Antimicrob. Agents Chemother., 2011, 55, 2743–2754 http://dx.doi.org/10.1128/AAC.00170-11CrossrefGoogle Scholar

  • [36] Saravolatz L.D, Stein G.E., Johnson L.B., Telavancin: A novel lipoglycopeptide, Clin. Infect. Dis., 2009, 49, 1908–1914 http://dx.doi.org/10.1086/648438CrossrefGoogle Scholar

  • [37] Billeter M., Zervos M.J., Chen A.Y., Dalovisio J.R., Kurukularatne Ch., Dalbavancin: A Novel Once-Weekly Lipoglycopeptide Antibiotic, Clin. Infect. Dis., 2008, 46, 577–583 http://dx.doi.org/10.1086/526772CrossrefGoogle Scholar

  • [38] Outterson K., Samora J.B., Keller-Cuda K.: Will longer antimicrobial patents improve global public health? Lancet Infect. Dis., 2007, 7, 559–566 http://dx.doi.org/10.1016/S1473-3099(07)70188-3CrossrefGoogle Scholar

  • [39] Lonks J.R., Goldmann D.A, Telithromycin: A ketolide antibiotic for the treatment of respiratory tract infections, Clin. Infect. Dis., 2005, 40, 1657–1664 http://dx.doi.org/10.1086/430067CrossrefGoogle Scholar

  • [40] Gleason P.P., Walters C., Heaton A.H., Schafer J.A., Telithromycin: The perils of hasty adoption and persistence of off-label prescribing, JMCP, 2007, 13, 420–425 Google Scholar

  • [41] English M.L., Fredericks Ch.E., Milanesio N.A., Rohowsky N., Xu Z.Q., Jenta T.R.J., et al., Cethromycin versus clarithromycin for xommunity-acquired pneumonia: Comparative efficacy and safety outcomes from two double-blinded, randomized, parallel-group, multicenter, multinational noninferiority studies, Antimicrob. Agents Chemother., 2012, 56, 2037–2047 http://dx.doi.org/10.1128/AAC.05596-11CrossrefGoogle Scholar

  • [42] Oldach D., Clark K., Schranz J., Das A., Craft J.C., Scott D., et al., A randomized, double-blind, multi-center, phase 2 study comparing the efficacy and safety of oral solithromycin (CEM-101) to oral levofloxacin in the treatment of patients with community-acquired bacterial pneumonia, Antimicrob Agents Chemother., 2013, doi:10.1128/AAC.00197-13 Google Scholar

  • [43] Golparian D., Fernandes P., Ohnishi M., Jensen J.S., Unemoa M., In vitro activity of the new fluoroketolide solithromycin (CEM-101) against a large collection of clinical Neisseria gonorrhoeae isolates and international reference strains, including those with high-level antimicrobial resistance: Potential treatment option for gonorrhea?, Antimicrob. Agents Chemother., 2012, 56, 2739–2742 http://dx.doi.org/10.1128/AAC.00036-12Google Scholar

  • [44] McCluskey S.M., Knapp Ch.W., Predicting antibiotic resistance, not just for quinolones, Front. Microbiol., 2011, 2, 1–2 http://dx.doi.org/10.3389/fmicb.2011.00178CrossrefGoogle Scholar

  • [45] Shaw K.J., Barbachyn M.R., The oxazolidinones: past, present, and future, Ann. N.Y. Acad. Sci., 2011, 1241, 48–70 http://dx.doi.org/10.1111/j.1749-6632.2011.06330.xCrossrefGoogle Scholar

  • [46] Jabes D., The antibiotic R&D pipeline: an update, Curr. Opin. Microbiol., 2011, 14, 564–569 http://dx.doi.org/10.1016/j.mib.2011.08.002CrossrefGoogle Scholar

  • [47] Remy J.M., Tow-Keogh C.A., McConnell T.S., Dalton J.M., Devito J.A., Activity of delafloxacin against methicillin-resistant Staphylococcus aureus: resistance selection and characterization, J. Antimicrob. Chemother., 2012, 67, 2814–2820 http://dx.doi.org/10.1093/jac/dks307CrossrefGoogle Scholar

  • [48] Morrow B.J., He W., Amsler K.M., Foleno B.D., Macielag M.J., Lynch A.S. et al., In vitro antibacterial activities of JNJ-Q2, a new broad-spectrum fluoroquinolone, Antimicrob. Agents Chemother, 2010, 54, 1955–1964 http://dx.doi.org/10.1128/AAC.01374-09CrossrefGoogle Scholar

  • [49] Trzoss M., Bensen D.C., Li X., Chen Z., Lam T., Zhang J., et al., Pyrrolopyrimidine inhibitors of DNA gyrase B (GyrB) and topoisomerase IV (ParE), Part II: development of inhibitors with broad spectrum, Gram-negative antibacterial activity, Bioorg Med Chem Lett. 2013, 23, 1537–1543 http://dx.doi.org/10.1016/j.bmcl.2012.11.073CrossrefGoogle Scholar

  • [50] Huband M.D., Cohen M.A., Zurack M., Hanna D.L., Skerlos L.A., Sulavik M.C., In vitro and in vivo activities of PD 0305970 and PD 0326448, new bacterial gyrase/topoisomerase inhibitors with potent antibacterial activities versus multidrug-resistant Gram-positive and fastidious organism groups, Antimicrob. Agents Chemother., 2007, 51, 1191–1201 http://dx.doi.org/10.1128/AAC.01321-06CrossrefGoogle Scholar

  • [51] Eakin A.E., Green O., Hales N., Walkup G.K., Bist S., Singh A., et al., Pyrrolamide DNA gyrase inhibitors: fragment-based nuclear magnetic resonance screening to identify antibacterial agents, Antimicrob. Agents Chemother., 2012, 56, 1240–1246 http://dx.doi.org/10.1128/AAC.05485-11CrossrefGoogle Scholar

  • [52] East S.P., Bantry Whtie C., Barker O., Barker S., Bennett J., Brown D., et al., DNA gyrase (GyrB)/topoisomerase IV (ParE) inhibitors: Synthesis and antibacterial activity, Bioorg. Med. Chem. Lett., 2009, 19, 894–899 http://dx.doi.org/10.1016/j.bmcl.2008.11.102CrossrefGoogle Scholar

  • [53] Cheng J., Thanassi J.A., Thoma Ch.L., Bradbury B.J., Deshpande M., Pucci M.J., Dual targeting of DNA gyrase and topoisomerase IV: Target interactions of heteroaryl isothiazolones in Staphylococcus aureus, Antimicrob. Agents Chemother., 2007, 51, 2445–2453 http://dx.doi.org/10.1128/AAC.00158-07CrossrefGoogle Scholar

  • [54] Pucci M.J., Podos S.D., Thanassi J.A., Leggio M.J., Bradbury B.J., Deshpande M., In vitro and in vivo profiles of ACH-702, an isothiazoloquinolone, against bacterial pathogens., Antimicrob. Agents Chemother., 2011, 55, 2860–2871 http://dx.doi.org/10.1128/AAC.01666-10CrossrefGoogle Scholar

  • [55] Black M.T., Stachyra T., Platel D., Girard A.M., Claudon M., Bruneau J.M., et al., Mechanism of action of the antibiotic NXL101, a novel nonfluoroquinolone inhibitor of bacterial type II topoisomerases, Antimicrob. Agents Chemother., 2008, 52, 3339–3349 http://dx.doi.org/10.1128/AAC.00496-08CrossrefGoogle Scholar

  • [56] Housman S.T., Sutherland Ch., Nicolau D.P., In vitro evaluation of novel compounds against selected resistant Pseudomonas aeruginosa isolates, Antimicrob. Agents Chemother., 2012, 56, 1646–1649 http://dx.doi.org/10.1128/AAC.05944-11CrossrefGoogle Scholar

  • [57] Politano A.D., Sawyer R.G., NXL-103, a combnation of flopristin and linopristin, for the potential treatment of bacterial infections including community-acquired pneumonia and MRSA. Curr. Opin. Investig. Drugs, 2010, 11, 225–236 Google Scholar

  • [58] Ross J.E., Sader H.S., Ivezic-Schoengeld Z., Paukner S., Jones R.N., Disk diffusion and MIC quality control ranges for BC-3205 and BC-3781, two novel pleuromutilin antibiotics, J. Clin. Microbiol., 2012, 50, 3361–3364 http://dx.doi.org/10.1128/JCM.01294-12CrossrefGoogle Scholar

  • [59] Lancaster J.W., Matthews S.J., Fidaxomicin: The newest addition to the armamentarium against Clostridium difficile infections, Clin. Ther., 2012, 34, 1–13 http://dx.doi.org/10.1016/j.clinthera.2011.12.003CrossrefGoogle Scholar

  • [60] Mascio C.T.M., Mortin L.I., Howland K.T., Van Praagh A.D.G., Zhang S., Arya A., et al., In vitro and in vivo characterization of CB-183,315, a novel lipopeptide antibiotic for treatment of Clostridium difficile, Antimicrob. Agents Chemother., 2012, 56, 5023–5030 http://dx.doi.org/10.1128/AAC.00057-12CrossrefGoogle Scholar

  • [61] Hoffman P.S., Sisson G., Croxen M.A., Welch K., Harman W.D., Cremades N., et al., Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni, Antimicrob. Agents Chemother., 2007, 51, 868–876 http://dx.doi.org/10.1128/AAC.01159-06CrossrefGoogle Scholar

  • [62] Warren C.A., Van Opstal E., Ballard T.E., Kennedy A., Wang X., Riggins M., et al., Amixicile, a novel inhibitor of pyruvate: ferredoxin oxidoreductase, shows efficacy against Clostridium difficile in a mouse infection model, Antimicrob Agents Chemother., 2012, 56, 4103–4111 http://dx.doi.org/10.1128/AAC.00360-12CrossrefGoogle Scholar

  • [63] Black M.T., Hodgson J., New target sites in bacteria for overcoming antibiotic resistance, Adv. Drug Deliv. Rev., 2005, 57, 1528–1538 http://dx.doi.org/10.1016/j.addr.2005.04.006CrossrefGoogle Scholar

  • [64] Projan S.J., New (and not so new) antibacterial targets — from where and when will the novel drugs come? Curr. Opin. Pharmacol., 2002, 2, 513–522 http://dx.doi.org/10.1016/S1471-4892(02)00197-2CrossrefGoogle Scholar

  • [65] Silver L.L., Challenges of Antibacterial Discovery, Clin. Microbiol. Rev., 2012, 24, 71–109 http://dx.doi.org/10.1128/CMR.00030-10CrossrefGoogle Scholar

  • [66] Dubrac S., Gomperts Boneca I., Poupel O., Msadek T., New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell Wall Metabolism and Biofilm Formationin Staphylococcus aureus, J. Bacteriol., 2007, 189, 8257–8269 http://dx.doi.org/10.1128/JB.00645-07CrossrefGoogle Scholar

  • [67] Watanabe T., Igarashi M., Okajima T., Ishii E., Kino H., Hatano M., et al., Isolation and characterization of signermycin B, an antibiotic that targets the dimerization domain of histidine kinase WalK, Antimicrob. Agents Chemother., 2012, 56, 3657–63 http://dx.doi.org/10.1128/AAC.06467-11CrossrefGoogle Scholar

  • [68] Teo J.W.P., Thayalan P., Beer D., Yap A.S.L., Nanjundappa M., Ngew X., Peptide deformylase inhibitors as potent antimycobacterial agents, Antimicrob. Agents Chemother., 2006, 50, 3665–3673 http://dx.doi.org/10.1128/AAC.00555-06CrossrefGoogle Scholar

  • [69] Foss M.H., Eun Y.J., Grove C.I., Pauw D.A., Sorto N.A., Rensvold J.W., et al., Inhibitors of bacterial tubulin target bacterial membranes in vivo., Medchemcomm., 2013, 1, 112–119 http://dx.doi.org/10.1039/c2md20127eCrossrefGoogle Scholar

  • [70] Ruzin A., Singh G., Severin A., Yang Y., Dushin R.G., Sutherland A.G., et al., Mechanism of action of the mannopeptimycins, a novel class of glycopeptide antibiotics active against vancomycinresistant Gram-positive bacteria, Antimicrob. Agents Chemother. 2004, 48, 728–738 http://dx.doi.org/10.1128/AAC.48.3.728-738.2004CrossrefGoogle Scholar

  • [71] De Pascale G., Nazi I., Harrison P.H.M., Wright G.D., β-lactone natural products and derivatives inactivate homoserine transacetylase, a target for antimicrobial agents, J. Antibiot., 2011, 64, 483–487 http://dx.doi.org/10.1038/ja.2011.37CrossrefGoogle Scholar

  • [72] Butler M.M., Williams J.D., Peet N.P., Moir D.T., Panchal R.G., Bavari S., et al., Comparative in vitro activity profiles of novel bis-indole antibacterials against Gram-positive and Gram-negative clinical isolates, Antimicrob. Agents Chemother., 2010, 54, 3974–3977 http://dx.doi.org/10.1128/AAC.00484-10CrossrefGoogle Scholar

  • [73] Agarwal A., Louise-May S., Thanassi J.A., Podos S.D., Small molecules inhibitors of E.coli primase, a novel bacterial target, Bioorg. Med. Chem. Lett., 2007, 17, 2807–2810 http://dx.doi.org/10.1016/j.bmcl.2007.02.056CrossrefGoogle Scholar

  • [74] Lopez M., Kohler S., Winum J.Y., Zinc metalloenzymes as new targets against the bacterial pathogen Brucella, J. Innorg. Biochem., 2011, 111, 138–145 http://dx.doi.org/10.1016/j.jinorgbio.2011.10.019CrossrefGoogle Scholar

  • [75] Manallack D.T., Crosby Y., Khakham Y., Capuano B., Platensimycin: A promising antimicrobial targeting fatty acid synthesis, Curr. Med. Chem., 2008, 15, 705–710 http://dx.doi.org/10.2174/092986708783885255CrossrefGoogle Scholar

  • [76] Banevicius M.A., Kaplan N, Hafkin B., Nicolau D.P., Pharmacokinetics, pharmacodynamics and efficacy of novel FabI inhibitor AFN-1252 against MSSA and MRSA in the murine thigh infection model, J. Chemother., 2013, 25, 26–31 http://dx.doi.org/10.1179/1973947812Y.0000000061CrossrefGoogle Scholar

  • [77] Falconer S.B., Brown E.D., New screens and targets in antibacterial drug discovery, Curr. Opin. Microbiol., 2009, 12, 497–504 http://dx.doi.org/10.1016/j.mib.2009.07.001CrossrefGoogle Scholar

  • [78] Merril C.R., Scholl D., Adhya S.L., The prospect for bacteriophage therapy in Western medicine., Nat. Rev. Drug Discov., 2003, 2, 489–497 http://dx.doi.org/10.1038/nrd1111CrossrefGoogle Scholar

  • [79] Ghannad M.S., Mohammadi A., Bacteriophage: Time to re-evaluate to potential of phage therapy as a promising agent to control multidrug-resistant bacteria, Iran. J. Basic Med. Sci., 2012, 15, 693–701 Google Scholar

  • [80] Coates A.R., Hu Y., Novel approaches to developing new antibiotics for bacterial infections, British J. Pharmac., 2007, 152, 1147–1154 http://dx.doi.org/10.1038/sj.bjp.0707432CrossrefGoogle Scholar

  • [81] Dabrowska K., Switala-Jelen K., Opolski A., Weber-Dabrowska B., Gorski A., Bacteriophage penetration in vertebrates, J. Appl. Microbiol., 2005, 98, 7–13 http://dx.doi.org/10.1111/j.1365-2672.2004.02422.xCrossrefGoogle Scholar

  • [82] Smet K.D., Contreras R., Human antimicrobial peptides: defensins, cathelicidins and histatins, Biotechnol. Lett., 2005, 27, 1337–1347 http://dx.doi.org/10.1007/s10529-005-0936-5CrossrefGoogle Scholar

  • [83] Wang G., Li X., Wang Z., APD2: the updated antimicrobial peptide database and its application in peptide design, Nucl. Acids Res., 2009, 37, D933–D937 http://dx.doi.org/10.1093/nar/gkn823CrossrefGoogle Scholar

  • [84] Bals R., Epithelial antimicrobial peptides in host defense against infection, Respir. Res., 2000, 1, 141–150 http://dx.doi.org/10.1186/rr25CrossrefGoogle Scholar

  • [85] Kavanagh K., Dowd S., Histatins: antimicrobial peptides with therapeutic potential. J. Pharm. Pharmacol., 2004, 56, 285–289 http://dx.doi.org/10.1211/0022357022971CrossrefGoogle Scholar

  • [86] White S.H., Wimley W.C., Selsted M.E., Structure, function, and membrane integration of defensins, Curr. Opin. Struct. Biol., 1995, 5, 521–527 http://dx.doi.org/10.1016/0959-440X(95)80038-7CrossrefGoogle Scholar

  • [87] Baltzer S.A., Brown M.H., Antimicrobial peptides-Promising Alternatives to Conventional Antibiotics, J. Mol Microbiol Biotechnol, 2011, 20, 228–235 http://dx.doi.org/10.1159/000331009CrossrefGoogle Scholar

  • [88] Svetoch E.A., Eruslanov B.V., Levchuk V.P., Isolation of Lactobacillus salivarius 1077 (NRLB-50053) and characterization of its bacteriocin, including the antimicrobial activity spectrum, Appl. Environ. Microbiol., 2011, 77, 2749–2754 http://dx.doi.org/10.1128/AEM.02481-10Google Scholar

  • [89] Cleveland J., Montville T.J, Nes I.F., Chikindas M.L., Bacteriocins: safe, natural antimicrobials for food preservation, Int. J. Food Microbiol., 2001, 4, 1–20 http://dx.doi.org/10.1016/S0168-1605(01)00560-8CrossrefGoogle Scholar

  • [90] Gill A., Scanlon T.C., Osipovitch D.C., Madden D.R., Griswold K.E., Crystal structure of a charge engineered human lysozyme having enhanced bactericidal activity, PLoS ONE, 2011, 6, e16788 http://dx.doi.org/10.1371/journal.pone.0016788CrossrefGoogle Scholar

  • [91] Koon H.W., Shih D.Q., Hing T.C., Yoo J.H., Ho S., Chen X., et al., Human monoclonal antibodies against Clostridium difficile toxin A and B inhibit inflammatory and histologic responses to toxins A and B in human colon and peripheral blood monocytes, Antimicrob. Agents Chemother., 2013, 57, 3214–3223 http://dx.doi.org/10.1128/AAC.02633-12CrossrefGoogle Scholar

  • [92] François B., Luyt C.E., Dugard A., Wolff M., Diehl J.L., Jaber S., Safety and pharmacokinetics of an anti-PcrV PEGylated monoclonal antibody fragment in mechanically ventilated patients colonized with Pseudomonas aeruginosa: a randomized, double-blind, placebo-controlled trial, Crit. Care Med., 2012, 40, 2320–2326 http://dx.doi.org/10.1097/CCM.0b013e31825334f6CrossrefGoogle Scholar

  • [93] Fadli M., Saad A., Sayadi S., Chevalier J., Mezrioui N.E., Pagès J.M., et al., Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection — bacteria and their synergistic potential with antibiotics, Phytomedicine, 2012, 19, 464–471 http://dx.doi.org/10.1016/j.phymed.2011.12.003CrossrefGoogle Scholar

  • [94] Hu Z.Q., Zhao W.H., Yoda Y., Asano N., Hara Y., Shimamura T., Additive, indifferent and antagonistic effects in combinations of epigallocatechin gallate with 12 non-beta-lactam antibiotics against methicillin-resistant Staphylococcus aureus, J. Antimicrob. Chemother., 2002, 50, 1051–1054 http://dx.doi.org/10.1093/jac/dkf250Google Scholar

  • [95] Grayson M.L, Heymann D., Pittet D., The evolving threat of antimicrobial resistance. Introduction, Chapter 1, In: The evolving threat of antimicrobial resistance: options for action, World Health Organization, 2012, http://www.who.int/patientsafety/implementation/amr/publication/en/index.html Google Scholar

  • [96] Grundmann H., O’Brien T.F., Stelling J.M., Surveillance to track antimicrobial use and resistance, Chapter 2, In: The evolving threat of antimicrobial resistance: options for action, World Health Organization, 2012, http://www.who.int/patientsafety/implementation/amr/publication/en/index.html Google Scholar

  • [97] Cars O., Heddini A., Measures to ensure better use of antibiotics, Chapter 3, In: The evolving threat of antimicrobial resistance: options for action, World Health Organization, 2012, http://www.who.int/patientsafety/implementation/amr/publication/en/index.html Google Scholar

  • [98] Cookson B., Gastmeier P., Seto W.H., Prevention and control of infection in the health care facilities, Chapter 5, In: The evolving threat of antimicrobial resistance: options for action, World Health Organization, 2012, http://www.who.int/patientsafety/implementation/amr/publication/en/index.html Google Scholar

  • [99] Chang S., So A., Fostering Innovation to Combat Antimicrobial Resistance, Chapter 6, In: The evolving threat of antimicrobial resistance: options for action, World Health Organization, 2012, http://www.who.int/patientsafety/implementation/amr/publication/en/index.html Google Scholar

  • [100] Gilbert D.N., Guidos R.J., Boucher H.W., Talbot G.H., Spellberg B., Edwards Jr J.E., et al, The 10×20 initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020, Infectious Diseases Society of America, Clin. Infect. Dis., 2010, 50, 1081–1083 http://dx.doi.org/10.1086/652237Google Scholar

About the article

Published Online: 2013-08-02

Published in Print: 2013-10-01

Citation Information: Open Life Sciences, Volume 8, Issue 10, Pages 943–957, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-013-0209-6.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Vladimir Berezin, Diyora Abdukhakimova, Lyudmila Trenozhnikova, Andrey Bogoyavlenskiy, Aizhan Turmagambetova, Alpamys Issanov, and Azliyati Azizan
Virology Journal, 2019, Volume 16, Number 1
Olga S. Voronkova and Albert I. Vinnikov
International Letters of Natural Sciences, 2016, Volume 51, Page 1
M. Ozgo
Journal of Molluscan Studies, 2014, Volume 80, Number 3, Page 286
Cristina de Souza Mendes and Adelaide de Souza Antunes
Antibiotics, 2013, Volume 2, Number 4, Page 500

Comments (0)

Please log in or register to comment.
Log in