Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 2, 2013

Edible flowers — antioxidant activity and impact on cell viability

  • Zdenka Kucekova EMAIL logo , Jiri Mlcek , Petr Humpolicek and Otakar Rop
From the journal Open Life Sciences

Abstract

The phenolic compound composition, antioxidant activity and impact on cell viability of edible flower extracts of Allium schoenoprasum; Bellis perennis; Cichorium intybus; Rumex acetosa; Salvia pratensis; Sambucus nigra; Taraxacum officinale; Tragopogon pratensis; Trifolium repens and Viola arvensis was examined for the first time. Total phenolic content of the flowers of these plants fell between 11.72 and 42.74 mg of tannin equivalents/kg of dry matter. Antioxidant activity ranged from 35.56 to 71.62 g of ascorbic acid equivalents/kg of dry matter. Using the Human Hepatocellular Carcinoma cell-line (HepG2) and the Human Immortalized Non-tumorigenic Keratinocyte cell line (HaCaT), we assessed cell viability following a 3 day incubation period in media containing 25, 50, 75 and 100 μg/ml of total phenolic compounds using a colorimetric MTT assay. These three properties could make the herbs useful in treatment of various diseases like cancer. The tested extracts had significant effects on cell viability, but the effects were dependent not only on the phenolic compound concentration and the edible flowers species, but also on the phenolic compound and antioxidant profiles. In addition, responses differed between cell lines.

[1] Mlcek J., Rop O., Fresh edible flowers of ornamental plants — A new source of nutraceutical foods, Trends Food Sci. Tech., 2011, 22, 561–569 http://dx.doi.org/10.1016/j.tifs.2011.04.00610.1016/j.tifs.2011.04.006Search in Google Scholar

[2] Sharif T., Auger C., Alhosin M., Ebel C., Achour M., Étienne-Selloum N., et al., Red wine phenolic compounds cause growth inhibition and apoptosis in acute lymphoblastic leukaemia cells by inducing a redoxsensitive up-regulation of p73 and downregulation of UHRF1, Eur. J. Cancer, 2010, 46, 983–994 http://dx.doi.org/10.1016/j.ejca.2009.12.02910.1016/j.ejca.2009.12.029Search in Google Scholar

[3] Castillo-Pichardo L., Martínez-Montemayor M.M., Martínez J.E., Wall K.M., Cubano L.A., Dharmawardhane S., Inhibition of mammary tumor growth and metastases to bone and liver by dietary grape phenolic compounds, Clin. Exp. Metastasis., 2009, 26, 505–516 http://dx.doi.org/10.1007/s10585-009-9250-210.1007/s10585-009-9250-2Search in Google Scholar

[4] Damianaki A., Bakogeorgou E., Kampa M., Notas G., Hatzoglou A., Panagiotou S., Gemetzi C., et al., Potent inhibitory action of red wine phenolic compounds on human breast cancer cells, J. Cell. Biochem., 2000, 78, 429–441 http://dx.doi.org/10.1002/1097-4644(20000901)78:3<429::AID-JCB8>3.0.CO;2-M10.1002/1097-4644(20000901)78:3<429::AID-JCB8>3.0.CO;2-MSearch in Google Scholar

[5] Yilmaz Y., Toledo R.T., Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid, J. Agr. Food Chem., 2004, 52, 255–260 http://dx.doi.org/10.1021/jf030117h10.1021/jf030117hSearch in Google Scholar

[6] Jin H., Tan X., Liu X., Ding Y., The study of effect of tea phenolic compounds on microsatellite instability colorectal cancer and its molecular mechanism, Int. J.Colorectal Dis., 2010, 25, 1407–1415 http://dx.doi.org/10.1007/s00384-010-1047-x10.1007/s00384-010-1047-xSearch in Google Scholar

[7] Oak M.H., El Bedoui J., Schini-Kerth V.B., Antiangiogenic properties of natural phenolic compounds from red wine and green tea, J. Nutr. Biochem., 2005, 16, 1–8 http://dx.doi.org/10.1016/j.jnutbio.2004.09.00410.1016/j.jnutbio.2004.09.004Search in Google Scholar

[8] Luceri C., Caderni G., Sanna A., Piero D., Red wine and black tea phenolic compounds modulate the expression of cycloxygenase-2, inducible nitric oxide synthase and glutathione-related enzymes in azoxymethane-induced F344 rat colon tumors, J. Nutr., 2002, 132, 1376–1379 10.1093/jn/132.6.1376Search in Google Scholar

[9] Kuroda Y., Hara Y., Antimutagenic and anticarcinogenic activity of tea phenolic compounds, Mutat. Res., 1999, 436, 69–97 http://dx.doi.org/10.1016/S1383-5742(98)00019-210.1016/S1383-5742(98)00019-2Search in Google Scholar

[10] Schlachterman A., Valle F., Wall K.M., Azios N.G., Castillo L., Morell L., et al., Combined resveratrol, quercetin, and catechin treatment reduces breast tumor growth in a nude mouse model, Transl. Oncol., 2008, 1, 19–27 10.1593/tlo.07100Search in Google Scholar

[11] Lin J.K., Liang Y.C., Lin-Shiau S.Y., Cancer chemoprevention by tea phenolic compounds through mitotic signal transduction blockade, Biochem. Pharmacol., 1999, 58, 911–915 http://dx.doi.org/10.1016/S0006-2952(99)00112-410.1016/S0006-2952(99)00112-4Search in Google Scholar

[12] Soleas G.J., Grass L., Josephy P.D., Goldberg D.M., Diamandis E.P., A comparison of the anticarcinogenic properties of four red wine phenolic compounds, Clin. Biochem., 2002, 35, 119–124 http://dx.doi.org/10.1016/S0009-9120(02)00275-810.1016/S0009-9120(02)00275-8Search in Google Scholar

[13] Nichenametla S.N., Taruscio T.G., Barney D.L., Exon J.H., A review of the effects and mechanisms of polyphenolics in cancer, Crit. Rev. Food Sci. Nutr., 2006, 46, 161–183 http://dx.doi.org/10.1080/1040839059100054110.1080/10408390591000541Search in Google Scholar PubMed

[14] Link A., Balaguer F., Goel A., Cancer chemoprevention by dietary phenolic compounds: Promising role for epigenetics, Biochem. Pharmacol., 2010, 80, 1771–1792 http://dx.doi.org/10.1016/j.bcp.2010.06.03610.1016/j.bcp.2010.06.036Search in Google Scholar PubMed PubMed Central

[15] Navarro-Perán E., Cabezas-Herrera J., Campo L.S., Rodríguez-López J.N., Effects of folate cycle disruption by the green tea polyphenol epigallocatechin-3-gallate, Int. J. Biochem. Cell Biol., 2007, 39, 2215–2225 http://dx.doi.org/10.1016/j.biocel.2007.06.00510.1016/j.biocel.2007.06.005Search in Google Scholar PubMed

[16] Poon V.K.M, Burd A., In vitro cytotoxity of silver: implication for clinical wound care, Burns, 2004, 30, 140–147 http://dx.doi.org/10.1016/j.burns.2003.09.03010.1016/j.burns.2003.09.030Search in Google Scholar PubMed

[17] Herzog E., Casey A., Lyng F.M., Chambers G., Byrne H.J., Davoren M., A new approach to the toxicity testing of carbon-based nanomaterials-the clonogenic assay, Toxicol Lett. 2007, 174, 49–60 http://dx.doi.org/10.1016/j.toxlet.2007.08.00910.1016/j.toxlet.2007.08.009Search in Google Scholar PubMed

[18] Mascotti K., McCullough J., Burger S.R., HPC viability measurement: trypan blue versus acridine orange and propidium iodide, Transfusion, 2002, 40, 693–696 http://dx.doi.org/10.1046/j.1537-2995.2000.40060693.x10.1046/j.1537-2995.2000.40060693.xSearch in Google Scholar PubMed

[19] Strober W., Trypan blue exclusion test of cell viability, Curr Protoc Immunol., 2001, 21, A.3B.1–A.3B.2 10.1002/0471142735.ima03bs21Search in Google Scholar PubMed

[20] Moravcikova D., Kucekova Z., Mlcek J., Rop O., Humpolicek P., Compositions of polyphenols in wild chive, meadow salsify, garden sorrel and ag yoncha and their anti-proliferative effect, Acta Univ. Agric. Et Silvic. Mendel. Brun., 2012, 60, 125–132 http://dx.doi.org/10.11118/actaun20126003012510.11118/actaun201260030125Search in Google Scholar

[21] Mosmann T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 1983, 65, 55–63 http://dx.doi.org/10.1016/0022-1759(83)90303-410.1016/0022-1759(83)90303-4Search in Google Scholar

[22] Hakimuddin F., Tiwari K., Paliyath G., Meckling K., Grape and wine phenolic compounds downregulate the expression of signal transduction genes and inhibit the growth of estrogen receptor-negative MDA-MB231 tumors in nu/nu mouse xenografts, Nutr. Res., 2008, 28, 702–713 http://dx.doi.org/10.1016/j.nutres.2008.06.00910.1016/j.nutres.2008.06.009Search in Google Scholar

[23] Lee Y.T., Don M.J., Hung P.S., Shen Y.C., Lo Y.S., Chang K.W., et al., Cytotoxicity of phenolic acid phenethyl esters on oral cancer cells, Cancer Lett. Vol., 2004, 223, 19–25 http://dx.doi.org/10.1016/j.canlet.2004.09.04810.1016/j.canlet.2004.09.048Search in Google Scholar

[24] Brand-Williams W., Cuvelier M.E., Berset C., Use of a free radical method to evaluate antioxidant aktivity, LWT-Food Sci. Technol., 1995, 28, 25–30 http://dx.doi.org/10.1016/S0023-6438(95)80008-510.1016/S0023-6438(95)80008-5Search in Google Scholar

[25] Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Byrne D.H., Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts, J. Food Compos. Anal., 2006, 19, 669–675 http://dx.doi.org/10.1016/j.jfca.2006.01.00310.1016/j.jfca.2006.01.003Search in Google Scholar

[26] Rupasinghe H.P.V., Jayasankar S., Lay W., Variation in total phenolic and antioxidant capacity among European plum genotypes, Sci. Hortic., 2006, 108, 243–246 http://dx.doi.org/10.1016/j.scienta.2006.01.02010.1016/j.scienta.2006.01.020Search in Google Scholar

[27] Boukamp P., Petrussevska R., Breitkreutz D., Hornung J., Markham A., Normal keratinization in a spontaneously immortalized aneuploid keratinocyte cell line, J. Cell. Biol., 1988, 106, 761–771 http://dx.doi.org/10.1083/jcb.106.3.76110.1083/jcb.106.3.761Search in Google Scholar PubMed PubMed Central

[28] Kucekova Z., Mlcek J., Humpolicek P., Rop O., Valasek P., Saha P., Phenolic compounds contained in Allium schoenoprasum, Tragopogon pratensis and Rumex acetosa and thein antiproliferative effect, Molecules, 2011, 16, 9207–17 http://dx.doi.org/10.3390/molecules1611920710.3390/molecules16119207Search in Google Scholar PubMed PubMed Central

[29] Brighente I.M.C., Dias M., Verdi L.G., Pizzolatti M.G., Antioxidant Activity and Total Phenolic Content of Some Brazilian Species, Pharm. Biol., 2007, 45, 156–161 http://dx.doi.org/10.1080/1388020060111313110.1080/13880200601113131Search in Google Scholar

[30] Spina M., Cuccioloni M., Sparapani L., Acciarri S., Eleuteri A., Fioretti E., et al., Comparative evaluation of flavonoid content in assessing quality of wild and cultivated vegetables for human consumption, J. Sci. Food Agr., 2008, 88, 294–304 http://dx.doi.org/10.1002/jsfa.308910.1002/jsfa.3089Search in Google Scholar

[31] Rieger G., Muller M., Guttenberger H., Bucar F., Influence of altitudinal variation on the content of phenolic compounds in wild populations of Calluna vulgaris, Sambucus nigra, and Vaccinium myrtillus, J. Agr. Food Chem., 2008, 56, 9080–9086 http://dx.doi.org/10.1021/jf801104e10.1021/jf801104eSearch in Google Scholar PubMed

[32] Tolra R.P, Poschenrieder C., Luppi B., Barce, J., Aluminium-induced changes in the profiles of both organic acids and phenolic substances underlie Al tolerance in Rumex acetosa L., Environ. Exp. Bot., 2005, 54, 231–238 http://dx.doi.org/10.1016/j.envexpbot.2004.07.00610.1016/j.envexpbot.2004.07.006Search in Google Scholar

[33] Stoggl W.M., Huck C.W., Bonn G.K., Structural elucidation of catechin and epicatechin in sorrel leaf extracts using liquid-chromatography coupled to diode array-, fluorescence-, and mass spectrometric detection, J. Sep. Sci., 2004, 27, 524–528 http://dx.doi.org/10.1002/jssc.20030169410.1002/jssc.200301694Search in Google Scholar PubMed

[34] Severino J.F., Stich K., Soja G., Ozone stress and antioxidant substances in Trifolium repens and Centaurea jacea leaves, Environ. Pollut., 2007, 146, 707–714 http://dx.doi.org/10.1016/j.envpol.2006.04.00610.1016/j.envpol.2006.04.006Search in Google Scholar PubMed

[35] Miliauskas G., Venskutonis P.R., van Beek T.A., Screening of radical scavenging activity of some medicinal and aromatic plant extracts, Food Chem., 2004, 85, 231–237 http://dx.doi.org/10.1016/j.foodchem.2003.05.00710.1016/j.foodchem.2003.05.007Search in Google Scholar

[36] Newell A., Yousef G., Lila M.A., Ramírez-Mares M.V., Gonzalez de Mejia E., Comparative in vitro bioactivities of tea extracts from six species of Ardisia and thein effect on growth inhibition of HepG2 cells, J. Ethnopharmacol., 2010, 130, 536–544 http://dx.doi.org/10.1016/j.jep.2010.05.05110.1016/j.jep.2010.05.051Search in Google Scholar PubMed

[37] Yu H.B., Li D.Y., Zhang H.F., Xue H.Z., Pan C.E., Zhao S.H., et al., Resveratrol Inhibits Invasion and Metastasis of Hepatocellular Carcinoma Cells, J. Anim. Vet. Adv., 2010, 9, 3117–3124 http://dx.doi.org/10.3923/javaa.2010.3117.312410.3923/javaa.2010.3117.3124Search in Google Scholar

[38] Belen G.A., Angeles M.M., Bravo L., Goya L., Ramos S., Quercetin modulates NF-κB and AP-1/JNK pathways to induce cell death in human hepatoma cells, Nutr. Cancer, 2010, 62, 390–401 http://dx.doi.org/10.1080/0163558090344119610.1080/01635580903441196Search in Google Scholar PubMed

[39] Svobodova A., Zdarilova A., Vostalova J., Lonicera caerulea and Vaccinium myrtillus fruit phenolic compounds protect HaCaT keratinocytes against UVB-induced phototoxic stress and DNA damage, J. Dermatol. Sci., 2009, 56, 196–204 http://dx.doi.org/10.1016/j.jdermsci.2009.08.00410.1016/j.jdermsci.2009.08.004Search in Google Scholar PubMed

[40] Nakajima Y., Nishida H., Matsugo S., Konishi T., Cancer cell cytotoxicity of extracts and small phenolic compounds from Chaga, J. Med. Food, 2009, 12, 501–507 http://dx.doi.org/10.1089/jmf.2008.114910.1089/jmf.2008.1149Search in Google Scholar PubMed

[41] Solakidi S., Psarra A.M.G., Sekeris C.E., Differential subcellular distribution of estrogen receptor isoforms: Localization of ER alpha in the nucleoli and ER beta in the mitochondria of human osteosarcoma SaOS-2 and hepatocarcinoma HepG2 cell lines, BBA-Mol. Cel. Res., 2005, 1745, 382–392 10.1016/j.bbamcr.2005.05.010Search in Google Scholar PubMed

[42] Planas-Silva M.D., Donaher J.L., Weinberg R.A.M., Functional activity of ectopically expressed estrogen receptor is not sufficient for estrogenmediated cyclin D1 expression, Cancer Res., 1999, 59, 4788–4792 Search in Google Scholar

[43] Bowers J.L., Tyulmenkov V.V., Jernigan S.C., Klinge C.M., Resveratrol acts as a mixed agonist/antagonist for estrogen receptors alpha and beta, Endocrinology, 2000, 141, 3657–3667 http://dx.doi.org/10.1210/en.141.10.365710.1210/endo.141.10.7721Search in Google Scholar PubMed

[44] Perdew G.H., Hollingshead B.D., DiNatale B.C., Morales J.L., Labrecque M.P., Takhar M.K., et al., Estrogen receptor expression is required for low-dose Resveratrol-mediated repression of aryl hydrocarbon receptor activity source, J. Pharmacol. Exp. Ther., 2010, 335, 273–283 http://dx.doi.org/10.1124/jpet.110.17065410.1124/jpet.110.170654Search in Google Scholar PubMed PubMed Central

[45] Barhoover M.A., Hall J.M., Greenlee W.F., Thomas R.S., Aryl hydrocarbon receptor regulates cell cycle progression in human breast cancer cells via a functional interaction with cyclin-dependent kinase 4, Mol. Pharmacol., 2010, 77, 195–201 http://dx.doi.org/10.1124/mol.109.05967510.1124/mol.109.059675Search in Google Scholar PubMed

[46] Narayanan B.A., Narayanan N.K., Re G.G., Nixon D.W., Differential expression of genes induced by resveratrol in LNCaP cells: P53-mediated molecular targets, Int. J. Cancer, 2003, 104, 204–212 http://dx.doi.org/10.1002/ijc.1093210.1002/ijc.10932Search in Google Scholar PubMed

[47] Kao T.K., Ou Y.C., Raung S.L., Chen W.Y., Yen Y.J., Lai C.Y., et al., Graptopetalum paraguayense E. Walther leaf extracts protect against brain injury in ischemic rats, Am. J. Chinese Med., 2010, 38, 495–516 http://dx.doi.org/10.1142/S0192415X1000801910.1142/S0192415X10008019Search in Google Scholar PubMed

[48] Kim B.H., Lee I.J., Lee H.Y., Han S.B., Hong J.T., Ahn B., et al., Quercetin 3-O-beta-(2“-galloyl)-glucopyranoside inhibits endotoxin LPSinduced IL-6 expression and NF-KB activation in macrophages, Cytokine, 2007, 39, 207–215 http://dx.doi.org/10.1016/j.cyto.2007.08.00210.1016/j.cyto.2007.08.002Search in Google Scholar PubMed

[49] Szliszka E., Zydowicz G., Janoszka B., Dobosz C., Kowalczyk-Ziomek G., Krol W., Ethanolic extract of Brazilian green propolis sensitizes prostate cancer cells to TRAIL-induced apoptosis, Int. J. Oncol., 2011, 38, 941–953 10.3892/ijo.2011.930Search in Google Scholar PubMed

[50] Maggi-Capeyron M.F., Ceballos P., Cristol J.P., Delbosc S., Le Doucen C., Pons M., et al., Wine phenolic antioxidants inhibit AP-1 transcriptional activity, J. Agr. Food Chem., 2001, 49, 5646–5652 http://dx.doi.org/10.1021/jf010595x10.1021/jf010595xSearch in Google Scholar PubMed

Published Online: 2013-8-2
Published in Print: 2013-10-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-013-0212-y/html
Scroll to top button