Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 8, Issue 12

Issues

Volume 10 (2015)

Effect of experimental top soil removal on vegetation of Pannonian salt steppes

Zuzana Melečková / Dobromil Galvánek / Daniel Dítě / Pavol Eliáš
Published Online: 2013-09-19 | DOI: https://doi.org/10.2478/s11535-013-0227-4

Abstract

Inland saline habitats of the Pannonian Lowland exhibit a specific variety of grasslands determined by a soil salinity gradient. Changes in the hydrological regime and absence of management have resulted in heavy degradation of the vegetation. The impact of topsoil removal on salt steppes was tested by a 3-year small-scale manipulated experiment in SW Slovakia (Kamenínske Slanisko Nature Reserve). Topsoil was removed in three contrasting types of vegetation with different soil salinities, i.e. in different stages of habitat degradation. Data were analysed by multi-way ANOVA and by multivariate methods. Species richness decreased and the proportion of halophytes increased significantly in the two types with the highest soil salinity; however, the total number of halophytes was not influenced by soil removal. The treatment caused inhibition of secondary succession on the plots with the highest salinity. The effect of the soil removal was only short-term in the vegetation with moderate salinity and on heavily degraded and desalinized types it even stimulated further recruitment of ruderal species. Topsoil removal has only limited potential for the restoration of Pannonian salt steppes. It should be applied only in slightly degraded vegetation, where salt accumulation is still present and target species propagules are available.

Keywords: Inland halophytic vegetation; Degradation; Ecological restoration; Slovakia

  • [1] Küster H., Keenleyside C., The origin and use of agricultural grasslands in Europe, In: P. Veen P., Jefferson R., de Smidt J., van der Straaten J. (Eds.), Grasslands in Europe of high nature value, KNNV Publishing, Zeist, 2009 Google Scholar

  • [2] Kiehl K., Plant species introduction in ecological restoration: Possibilities and limitations. Basic Appl. Ecol., 2010, 11, 281–284 http://dx.doi.org/10.1016/j.baae.2010.02.008CrossrefGoogle Scholar

  • [3] Miller J.R., Hobbs R.J., Habitat restoration — do we know what we?re doing?, Restorat. Ecol., 2007, 15, 382–390 http://dx.doi.org/10.1111/j.1526-100X.2007.00234.xCrossrefGoogle Scholar

  • [4] Sümegi P., Molnár A. Szilágyi G., Alkalinization in the Hortobágy [Szikesedés a Hortobágyon], Term. világa, 2000, 131, 213–216, (in Hungarian) Google Scholar

  • [5] Karpov D.N., Yuritsyna N.A., Saline soils vegetations of the Southern Ural and adjacent regions, In: Golub V. B., Saksonov S. V. (Eds.), Togliatti, 2006 (in Russian) Google Scholar

  • [6] Krist V., Halophytic vegetation of southwestern Slovakia and the northern part of the Lesser Plain [Halofytní vegetace jihozápadního Slovenska a severní části Malé uherské níŽiny], Práce Moravské Přírodovědecké Společnosti 12, Brno, 1940 (in Czech) Google Scholar

  • [7] Vicherek J., Vegetace ČSSR, Ser. A 5, The plant communities of halophytes and Subhalophytenvegetation Czechoslovakia [Die Pflanzengesellschaften der Halophyten- und Subhalophytenvegetation der Tschechoslowakei], Academia, Praha, 1973 (in German) Google Scholar

  • [8] Osvačilová V., Svobodová Z., Floristical and phytocoenological survey of the Nitra district (tematical map) [Floristicko-fytocenologický prieskum Nitrianskeho kraja], VŠP, Nitra, 1961 (in Slovak) Google Scholar

  • [9] Sádovský M., Eliášjun. P., Dítě D., Distibution of halophytic communities in southwestern Slovakia: History and present [Historické a súčasné rozšírenie slaniskových spoločenstiev na juhozápadnom Slovensku], Bull. Slov. Bot. Spoločn. Bratislava, 2004, Supplement, 10, 127–129, (in Slovak) Google Scholar

  • [10] Bouzillé J.B., Tournade F., Blockage of vegetational succession over several centuries in wetlands of Western France, C.R. Acad. Sc., Paris Sciences et Vie, 1994, 317, 571–574, (in French) Google Scholar

  • [11] Bakker J.P., Esselink P., Dijkema K.S., van Duin W.E., de Jong D.J., Restoration of salt marshes in the Netherlands, Hydrologia, 2002, 478, 29–51 Google Scholar

  • [12] Borhidi A., Kevey B., Lendvai G., Plant Communities Of Hungary, Akadémiai Kiadó, Budapest, 2013 Google Scholar

  • [13] Piernik A., Inland halophilous vegetation as indicator of soil salinity, Basic Appl. Ecol., 2003, 4, 525–536 http://dx.doi.org/10.1078/1439-1791-00154CrossrefGoogle Scholar

  • [14] Schmidt D., Alkali vegetation fragments in the surroundings of Győr [A Győr környéki szikesek növényzete], Flora Pannonica, 2007, 5, 95–104 (in Hungarian) Google Scholar

  • [15] Šumberová K., Novák J., Sádlo J., Saline grasslands [Slaniskové trávníky (Festuco-Puccinellietea)], In: Chytrý M. (Ed.), Vegetation of the Czech republic 1 [Vegetace České Republiky 1], Praha, Academia, 2007 Google Scholar

  • [16] Dajic-Stevanovic Z., Pecinar I., Kresovic M., Vrbnicanin S., Tomovic Lj., Biodiversity, utilization and management of grasslands of salt affected soils in Serbia, Community Ecol., 2008, 9(Suppl 1), 107–114 http://dx.doi.org/10.1556/ComEc.9.2008.S.15CrossrefGoogle Scholar

  • [17] Šefferová Stanová V., Janák M., Ripka J., Management models for habitats in Natura 2000 Sites. 1530 *Pannonic salt steppes and salt marshes, European Commission, 2008, http://ec.europa.eu/environment/nature/natura2000/management/habitats/pdf/1530_Pannonic_salt_steppes.pdf Google Scholar

  • [18] Szabados K., Bošnjak T., Tucakov M., Kicošev V., The importance of the hydrological network of Vojvodina for biodiversity conservation [Značaj hidrološke mreŽe Vojvodine za očuvanje biološke raznovrsnosti], Savetovanje, Melioracije 11, Novi Sad, Temat. zb. radova, 2009, 207–214 (in Serbian) Google Scholar

  • [19] Bakker J.P., Ruyter J.C., Effects of five years of grazing on a salt-marsh vegetation. A study with sequential mapping, Vegetatio, 1981, 44, 81–100 http://dx.doi.org/10.1007/BF00133005CrossrefGoogle Scholar

  • [20] Loucougaray G., Bonis A., Bouzillé J. B., Effects of grazing by horses and/or cattle on the diversity of coastal grasslands in western France, Biol. Conserv., 2004, 116, 59–71 http://dx.doi.org/10.1016/S0006-3207(03)00177-0CrossrefGoogle Scholar

  • [21] Bonis A., Bouzillé J. B., Amiaud B., Loucougaray G., Plant community patterns in old embanked grasslands and the survival of halophytic flora, Flora, 2005, 200, 74–87 http://dx.doi.org/10.1016/j.flora.2004.06.002CrossrefGoogle Scholar

  • [22] Wolters M., Garbutt A., Bakker J. P., Salt-marsh restoration: evaluating the success of deembankments in north-west Europe, Biol. Conserv., 2005, 123, 249–268 http://dx.doi.org/10.1016/j.biocon.2004.11.013CrossrefGoogle Scholar

  • [23] Bernhardt K. G. Koch M., Restoration of a salt marsh system: temporal change of plant species diversity and composition, Basic Appl. Ecol., 2003, 4, 441–451 http://dx.doi.org/10.1078/1439-1791-00180CrossrefGoogle Scholar

  • [24] Lengyel S, Varga K, Kosztyi B, Lontay L, Déri E, Török P, et al., Grassland restoration to conserve landscape-level biodiversity: a synthesis of early results from a large-scale project, Appl. Veg. Sci., 2012, 15, 264–276 http://dx.doi.org/10.1111/j.1654-109X.2011.01179.xCrossrefGoogle Scholar

  • [25] Török P., Miglécz T., Valkó O., Kelemen A., Tóth K., Lengyel S., et al., Fast restoration of grassland vegetation by a combination of seed mixture sowing and low-diversity hay transfer, Ecol. Eng., 2012, 44, 133–138 http://dx.doi.org/10.1016/j.ecoleng.2012.03.010CrossrefGoogle Scholar

  • [26] Lindig-Cisneros R., Zedler J.B., Halophyte recruitment in a salt marsh restoration site. Estuaries, 2002, 25, 1174–1183 http://dx.doi.org/10.1007/BF02692214CrossrefGoogle Scholar

  • [27] Török P., Vida E., Deák B., Lengyel S., Tóthmérész B., Grassland restoration on former croplands in Europe: an assessment of applicability of techniques and costs, Biodivers. Conserv., 2011, 20, 2311–2332 http://dx.doi.org/10.1007/s10531-011-9992-4CrossrefGoogle Scholar

  • [28] Weijtmans K., Jongejans E., van Ruijven J., Sod cutting and soil biota effects on seedling performance, Acta Oecol., 2009, 35, 651–656 http://dx.doi.org/10.1016/j.actao.2009.06.004CrossrefGoogle Scholar

  • [29] Engels J.G., Rink F., Jensen K., Stress tolerance and biotic interactions determine plant zonation patterns in estuarine marshes during seedling emergence and early establishment, J. Ecol., 2001, 99, 277–287 http://dx.doi.org/10.1111/j.1365-2745.2010.01745.xCrossrefGoogle Scholar

  • [30] Molnár Z., Biró M., Bölöni J., Horváth F., Distribution of the (semi-)natural habitats in Hungary I. Marshes and grasslands, Acta Bot. Hung., 2008, 50, 59–106 http://dx.doi.org/10.1556/ABot.50.2008.Suppl.5CrossrefGoogle Scholar

  • [31] Lenssen J.P.M., van de Steeg H.M., de Kroon H., Does disturbance favour weak competitors?, Mechanisms of changing plant abundance after flooding, J. Veg. Sci., 2004, 15, 305–314 CrossrefGoogle Scholar

  • [32] Klimkowska A., Dzierza P., Brzezińska K., Kotowski W., Medrzycki P., Can we balance the high costs of nature restoration with the method of topsoil removal?, Case study from Poland, J. Nat. Cons., 2010, 18, 202–205 http://dx.doi.org/10.1016/j.jnc.2009.09.003CrossrefGoogle Scholar

  • [33] Verhagen R., Klooker J., Bakker J.P., van Diggelen R., Restoration success of low-production plant communities on former agricultural soils after topsoil removal, App. Veg. Sci., 2001, 4, 75–82 http://dx.doi.org/10.1111/j.1654-109X.2001.tb00236.xCrossrefGoogle Scholar

  • [34] Allison M., Ausden M., Successful use of topsoil removal and soil amelioration to create heathland vegetation, Biol. Conserv., 2004, 120, 221–228 http://dx.doi.org/10.1016/j.biocon.2004.02.017CrossrefGoogle Scholar

  • [35] Diaz A., Green I., Tibbett M., Re-creation of heathland on improved pasture using top soil removal and sulphur amendments: Edaphic drivers and impacts on ericoid mycorrhizas, Biol. Conserv., 2008, 141, 1628–1635 http://dx.doi.org/10.1016/j.biocon.2008.04.006CrossrefGoogle Scholar

  • [36] Kiehl K., Pfadenhauer J., Establishment and persistence of target species in newly created calcareous grasslands on former arable fields, Plant Ecol., 2007, 189, 31–48 http://dx.doi.org/10.1007/s11258-006-9164-xCrossrefGoogle Scholar

  • [37] Wolters M., Garbutt A., Bekker R.M., Bakker J.P., Carey P.D., Restoration of salt-marsh vegetation in relation to site suitability, species pool and dispersal traits, J. App. Ecol., 2008, 45, 904–912 http://dx.doi.org/10.1111/j.1365-2664.2008.01453.xCrossrefGoogle Scholar

  • [38] Zhao B., Yan Y., Guo H.Q., He M.M., Gu Y.J., Li B., Monitoring rapid vegetation succession in estuarine wetland using time series MODIS-based indicators: An application in the Yangtze River Delta area, Ecol. indicators, 2009, 9(2), 346–356 http://dx.doi.org/10.1016/j.ecolind.2008.05.009CrossrefGoogle Scholar

  • [39] Miklós L., Hrnčiarová T., (Eds.), Atlas of the Slovak republic, 1. edition [Atlas krajiny Slovenskej republiky, 1. vydanie] MŽP SR Bratislava, SAŽP Banská Bystrica, 2002 (in Slovak) Google Scholar

  • [40] Svobodová Z., Řehořek V., The recent stage of flora and vegetation of Kamenínske slanisko Natural Reserve and problem of its protection [Súčasný stav flóry a vegetácie Štátnej prírodnej rezervácie Kamenínske slanisko a problematika jeho ochrany], Sprav. Obl. Podun. Múzea — prír. vedy, 1985, 5, 67–74 (in Slovak) Google Scholar

  • [41] Illyés E., Botta-Dukát Z., Molnár Zs., Patch and landscape factors affecting the naturalness based quality of three model grassland habitats in Hungary, Acta Bot. Hung., 2008, 50(Suppl), 179–197 http://dx.doi.org/10.1556/ABot.50.2008.Suppl.9CrossrefGoogle Scholar

  • [42] Fehér S., Origin and development of the salt steppes and marshes in SW Slovakia, Flora Pannon., 2007, 5, 67–93 Google Scholar

  • [43] Dítě D., Eliášjun. P., Sádovský M., Camphorosmetum annuae Rapaics ex Soó 1933 — vanishing plant community of saline habitats in Slovakia, Thaiszia, 2008, 18, 9–20 Google Scholar

  • [44] Eliášjun. P., Fehér S., Dítě D., Šuvada R., Current occurrence of Hog’s Fennel (Peucedanum officinale) in Slovakia [Recentný výskyt smldníka lekárskeho (Peucedanum officinale) na Slovensku], Bull. Slov. Bot. Spoločn, Bratislava, 2010, 32/1, 29–35 (in Slovak) Google Scholar

  • [45] Richards L.A., Diagnosis and Improvement of Saline and Alkali Soils, Salinity Laboratory Staff, Washington, 1954 Google Scholar

  • [46] STN ISO 13536, Soil quality. Determination of cationic exchange capacity and content of exchangeable cations using barium chloride buffer pH 8.1, SÚTN, Bratislava, 2001 (in Slovak). Google Scholar

  • [47] Underwood A. J., Experiments in ecology, Cambridge University Press, Cambridge, 1997 Google Scholar

  • [48] Lepš J., Šmilauer P., Multivariate Analysis of Ecological Data using CANOCO. Cambridge University Press, Cambridge, 2003 Google Scholar

  • [49] Stewart-Oaten A., On rejection rates of paired intervention analysis: comment, Ecology, 2003, 84, 2795–2799 http://dx.doi.org/10.1890/02-3115CrossrefGoogle Scholar

  • [50] ter Braak C.J.F., Šmilauer P., CANOCO reference manual and CanoDraw for Windows user’s guide. Software for Canonical Community Ordination (version 4.5), Wageningen and České Budějovice, Biometris, 2002 Google Scholar

  • [51] Marhold K. (Ed.), Ferns and higher plants, In: Marhold K., Hindák F. (Eds.), Checklist of Non-Vascular and Vascular Plants of Slovakia [Zoznam niŽších a vyšších rastlín Slovenska], Veda, Bratislava, 1997 Google Scholar

  • [52] Molnár Z., Borhidi A., Hungarian alkali vegetation: Origins, landscape history, syntaxonomy, conservation, Phytocoenologia, 2003, 33, 377–408 http://dx.doi.org/10.1127/0340-269X/2003/0033-0377CrossrefGoogle Scholar

  • [53] KneŽević A., Andelić M., Merkulov L.J., Ekomorphological characteristics of Camphorosma annua Pall. (Chenopodiaceae) [Eko-morfološke karakteristike vrste Camphorosma annua Pall.], Zb. radova PMF, Novi Sad, 1992, 22, 31–38 (in Serbian) Google Scholar

  • [54] Gintzburger G., Toderich K.N., Mardonov B.K., Mahmudov M.M., Rangelands of the Arid and Semiarid Zones in Uzbekistan, CIRAD, Montpellier, 2003 Google Scholar

  • [55] Ungar I. A., Influence of salinity on seed germination in succulent halophytes, Ecology, 1962, 43, 763–764 http://dx.doi.org/10.2307/1933476CrossrefGoogle Scholar

  • [56] Muraközy E., Nagy Z., Duhazé C., Bouchereau A., Tuba Z.,Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary, J. Plant Physiol., 2003, 160, 395–401 http://dx.doi.org/10.1078/0176-1617-00790CrossrefGoogle Scholar

  • [57] Makowczyńska J., Andrzejewska-Golec E., Micropropagation of Plantago maritima L. — a vanishing species in Poland, Acta Soc. Bot. Pol., 2009, 78, 13–18 http://dx.doi.org/10.5586/asbp.2009.002CrossrefGoogle Scholar

  • [58] Dormann C.F., van der Wal R., Bakker J.P., Competition and herbivory during salt marsh succession: the importance of forb growth strategy, J. Ecol., 2000, 88, 571–583 http://dx.doi.org/10.1046/j.1365-2745.2000.00469.xCrossrefGoogle Scholar

  • [59] Dormann C.F., Bakker J.P., The impact of herbivory and competition on flowering and survival during saltmarsh succession, Plant Biol., 2000, 2, 68–76 http://dx.doi.org/10.1055/s-2000-9179CrossrefGoogle Scholar

  • [60] Kovács D., Tóth T., Marth P., Soil salinity between 1992 and 2000 in Hungary, Agrokém. Talajtan, 2006, 55(1), 89–98 http://dx.doi.org/10.1556/Agrokem.55.2006.1.10Google Scholar

  • [61] Armstrong A.S.B., Rycroft D.W., Tanton T.W., Seasonal movement of salts in naturally structured saline-sodic clay soils, Agr. Water Manage., 1996, 32, 15–27 http://dx.doi.org/10.1016/S0378-3774(96)01262-0CrossrefGoogle Scholar

  • [62] Tóth T., Medium-term vegetation dynamics and their association with edaphic conditions in two Hungarian saline grassland communities, Grassland Sci., 2010, 56, 13–18 http://dx.doi.org/10.1111/j.1744-697X.2009.00167.xCrossrefGoogle Scholar

  • [63] Beyen, W., Meire P., Ecohydrology of saline grasslands: Consequences for their restoration, App. Veg. Sci., 2003, 6, 153–160 Google Scholar

  • [64] Grubb P. J., Maintenance of species-richness in plant communities — importance of regeneration niche, Biol. Reviews, 1977, 52, 107–145 http://dx.doi.org/10.1111/j.1469-185X.1977.tb01347.xCrossrefGoogle Scholar

  • [65] Bakker J.P., Bravo L.G., Mouissie A.M., Dispersal by cattle of salt-marsh and dune species into saltmarsh and dune communities, Plant Ecol., 2008, 197, 43–54 http://dx.doi.org/10.1007/s11258-007-9358-xCrossrefGoogle Scholar

  • [66] Auffret A.G., Schmucki R., Reimark J., Cousins S.A.O., Animal movement provides useful functional connectivity for plants in fragmented systems, J. Veg. Sci., 2012, 23, 970–977 http://dx.doi.org/10.1111/j.1654-1103.2012.01413.xCrossrefGoogle Scholar

About the article

Published Online: 2013-09-19

Published in Print: 2013-12-01


Citation Information: Open Life Sciences, Volume 8, Issue 12, Pages 1204–1215, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-013-0227-4.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Zuzana Melečková, Daniel Dítě, Pavol Eliáš jun, Vladimír Píš, and Dobromil Galvánek
Annales Botanici Fennici, 2014, Volume 51, Number 5, Page 285

Comments (0)

Please log in or register to comment.
Log in