Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 8, Issue 12

Issues

Volume 10 (2015)

LED irradiance level affects growth and nutritional quality of Brassica microgreens

Giedrė Samuolienė / Aušra Brazaitytė / Julė Jankauskienė / Akvilė Viršilė / Ramūnas Sirtautas / Algirdas Novičkovas / Sandra Sakalauskienė / Jurga Sakalauskaitė / Pavelas Duchovskis
Published Online: 2013-09-19 | DOI: https://doi.org/10.2478/s11535-013-0246-1

Abstract

This study examines the effect of irradiance level produced by solid-state light-emitting diodes (LEDs) on the growth, nutritional quality and antioxidant properties of Brassicaceae family microgreens. Kohlrabi (Brassica oleracea var. gongylodes, ‘Delicacy Purple’) mustard (Brassica juncea L., ‘Red Lion’), red pak choi (Brassica rapa var. chinensis, ‘Rubi F1’) and tatsoi (Brassica rapa var. rosularis) were grown using peat substrate in controlled-environment chambers until harvest time (10 days, 21/17°C, 16 h). A system of five lighting modules with 455, 638, 665 and 731 nm LEDs at a total photosynthetic photon flux densities (PPFD) of 545, 440, 330, 220 and 110 µmol m−2s−1 respectively were used. Insufficient levels of photosynthetically active photon flux (110 µmol m−2 s−1) suppressed normal growth and diminished the nutritional value of the Brassica microgreens studied. In general, the most suitable conditions for growth and nutritional quality of the microgreens was 330–440 µmol m−2 s−1 irradiation, which resulted in a larger leaf surface area, lower content of nitrates and higher total anthocyanins, total phenols and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging capacity. High light levels (545 µmol m−2 s−1), which was expected to induce mild photostress, had no significant positive impact for most of investigated parameters.

Keywords: Light; Functional foods; Antioxidants; Chlorophylls; Leaf area; Nitrates; Sucrose

  • [1] Xiao Z., Lester G.E., Luo Y., Wang Q., Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens, J. Agric. Food. Chem., 2012, 60, 7644–7651 http://dx.doi.org/10.1021/jf300459bCrossrefGoogle Scholar

  • [2] Sharma P., Ghimeray A.K., Gurung A., Jin C.W., Rho H.S., Cho D.H., Phenolic contents, antioxidant and α-glucosidase inhibition properties of Nepalese strain buckwheat vegetables, Afr. J. Biotechnol., 2012, 11, 184–190 Google Scholar

  • [3] Kopsell D.A., Sams C.E., Increase in shoot tissue pigments, glucosinolates and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes, J. Amer. Soc. Hort. Sci., 2013, 138, 31–37 Google Scholar

  • [4] Samuolienė G., Urbonavičiūtė A., Brazaitytė A., Šabajevienė G., Sakalauskaitė J., Duchovskis P., The impact of LED illumination on antioxidant properties of sprouted seeds, Cent. Eur. J. Biol., 2011, 6, 68–74 http://dx.doi.org/10.2478/s11535-010-0094-1CrossrefGoogle Scholar

  • [5] Samuolienė G., Sirtautas R., Brazaitytė A., Duchovskis P., LED lighting and seasonality effects antioxidant properties of baby leaf lettuce, Food Chem., 2012, 134, 1494–1499 http://dx.doi.org/10.1016/j.foodchem.2012.03.061CrossrefGoogle Scholar

  • [6] Johkan M., Shoji K., Goto F., Hahida S., Yoshihara T., Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce, Hort. Science, 2010, 45, 1809–1814 Google Scholar

  • [7] Li Q., Kubota C., Effects of supplemental light quality in growth and phytochemicals of baby leaf lettuce, Environ. Experiment. Botany, 2009, 67, 59–64 http://dx.doi.org/10.1016/j.envexpbot.2009.06.011CrossrefGoogle Scholar

  • [8] Charron C.S., Sams C.E., Glucosinolate contents and myrosinase activity in rapid-cycling brassica olearacea grown in controlled environment, J. Amer. Soc. Hort. Sci., 2004, 129, 321–330 Google Scholar

  • [9] Lefsrud M.G., Kopsell D.A., Curran-Celentano J., Irradiance levels affect growth parameters and carotenoid pigments in kale and spinach grown in a controlled environment, Physiol. Plant., 2006, 127, 624–631 http://dx.doi.org/10.1111/j.1399-3054.2006.00692.xCrossrefGoogle Scholar

  • [10] Urbonavičiūtė A., Samuolienė G., Brazaitytė A., Duchovskis P., Ruzgas V., Žukauskas A., The effect of variety and lighting quality on wheatgrass antioxidant properties, Zemdirbyste, 2009, 96, 119–128 Google Scholar

  • [11] Stutte G.W., Edney S., Skerritt T., Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes, Hort Science, 2009, 44, 79–82 Google Scholar

  • [12] Ilieva I., Ivanova T., Naydenov Y., Dandolov I., Stevanov D., Plant experiments with light-emitting diode module in Svet space greenhouse, Adv. Space Res., 2010, 46, 840–845 http://dx.doi.org/10.1016/j.asr.2010.05.009CrossrefGoogle Scholar

  • [13] Anjana S.U., Iqbal M., Factors, responsible for nitrate accumulation: a review, J. Sustain. Agric., 2009, 4, 533–549 http://dx.doi.org/10.1007/978-90-481-2666-8_33CrossrefGoogle Scholar

  • [14] Golan T., Müller-Moulé P., Niyogi K.K., Photoprotection mutants of Arabidopsis thaliana acclimate to high light by increasing photosynthesis and specific antioxidants, Plant Cell Environ., 2006, 29, 879–887 http://dx.doi.org/10.1111/j.1365-3040.2005.01467.xCrossrefGoogle Scholar

  • [15] Zhou Y.H., Zhang Y.Y., Zhao X., Yu H.J., Shi K., Yu J.Q., Impact of light variation on development of photoprotection, antioxidants, and nutritional value in Lactuca sativa L., J. Agric. Food Chem., 2009, 57, 5494–5500 http://dx.doi.org/10.1021/jf8040325CrossrefGoogle Scholar

  • [16] Kopsell D.A., Pantanizopoulos N.I., Sams C.E., Kopsell D.E., Shoot tissue pigment levels increase in ‘Florida Broadleaf’ mustard (Brassica juncea L.) microgreens following high light treatment, Sci. Hort., 2012, 14, 96–99 http://dx.doi.org/10.1016/j.scienta.2012.04.004CrossrefGoogle Scholar

  • [17] Tamulaitis G., Duchovskis P., Bliznikas Z., Breive K., Ulinskaite R., Brazaityte A. et al., Highpower light-emitting diode based facility for plant cultivation, J. Phys. D. Appl. Phys., 2005, 38, 3182–3187 http://dx.doi.org/10.1088/0022-3727/38/17/S20CrossrefGoogle Scholar

  • [18] Ragaee S., Abdel-Aal E.M., Maher N., Antioxidant activity and nutrient composition of selected cereals for food use, Food Chem., 2006, 95, 32–38 http://dx.doi.org/10.1016/j.foodchem.2005.04.039CrossrefGoogle Scholar

  • [19] Stanciu G., Lupşor S., Sava C., Spectrophotometric characterizations of anthocyans extracted from black grapes skin, Ovidijus University Ann. Chem., 2009, 20, 205–208 Google Scholar

  • [20] Janghel E.K., Gupta V.K., Rai M.K., Rai J.K., Micro determination of ascorbic acid using methyl viologen, Talanta, 2007, 72, 1013–1016 http://dx.doi.org/10.1016/j.talanta.2006.12.041CrossrefGoogle Scholar

  • [21] Geniatakis E., Fousaki M., Chaniotakis N.A., Direct potentiometric measurement of nitrate in seeds and produce, Comm. Soil Sci. Plant Anal., 2003, 34, 571–579 http://dx.doi.org/10.1081/CSS-120017840CrossrefGoogle Scholar

  • [22] Evans J.R., Poorter H., Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain, Plant, Cell Environ., 2001, 24, 755–767 http://dx.doi.org/10.1046/j.1365-3040.2001.00724.xCrossrefGoogle Scholar

  • [23] Fu W., Li P., Wu Y., Tang J., Effects of different light intensities on anti-oxidative enzyme activity, quality and biomass in lettuce, Hort. Sci., 2012, 39, 129–134. Google Scholar

  • [24] Santamaria P., Elia A., Gonnella M., Parente A., Serio F., Ways of reducing rocket salad nitrate content, Acta Hortic., 2001, 548, 529–537 Google Scholar

  • [25] Araya T., Noguchi K., Terashima I., Effect of nitrogen on the carbohydrate repression of photosynthesis in leaves of Phaseolus vulgaris L., J. Plant Res., 2010, 123, 371–379 http://dx.doi.org/10.1007/s10265-009-0279-8CrossrefGoogle Scholar

  • [26] Walters R.G., Shephard F., Rogers J.J.M., Rolfe S.A., Horton P., Identification of mutants of Arabidopsis defective in acclimation of photosynthesis to the light environment, Plant Physiol., 2003, 131, 472–481 http://dx.doi.org/10.1104/pp.015479CrossrefGoogle Scholar

  • [27] Oh M.M., Rajashekar C.B., Antioxidant contents of edible sprouts: effects of environmental shocks, J. Sci. Food Agric., 2009, 89, 2221–2227 http://dx.doi.org/10.1002/jsfa.3711CrossrefGoogle Scholar

  • [28] Oh M.M., Carey E.E., Rajashekar C.B., Environmental stresses induce health — promoting phytochemicals in lettuce, Plant Physiol. Bioch., 2009, 47, 578–583 http://dx.doi.org/10.1016/j.plaphy.2009.02.008CrossrefGoogle Scholar

  • [29] Page M., Sultana N., Paszkiewicz K., Florance H., Smirnoff N., The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: further evidence for redox control of anthocyanin synthesis, Plant Cell Environ., 2012, 35, 388–404 http://dx.doi.org/10.1111/j.1365-3040.2011.02369.xCrossrefGoogle Scholar

  • [30] Shao H.B., Chu L.Y., Lu Z.H., Kang C.M., Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells, Int. J. Biol. Sci., 2008, 4, 8–14 http://dx.doi.org/10.7150/ijbs.4.8CrossrefGoogle Scholar

  • [31] Solfanelli C., Poggi A., Loreti E., Alpi A., Perata P., Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis, Plant Physiol., 2006, 144, 637–646 http://dx.doi.org/10.1104/pp.105.072579CrossrefGoogle Scholar

About the article

Published Online: 2013-09-19

Published in Print: 2013-12-01


Citation Information: Open Life Sciences, Volume 8, Issue 12, Pages 1241–1249, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-013-0246-1.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A. Viršilė, A. Brazaitytė, S. Sakalauskienė, J. Jankauskienė, J. Miliauskienė, and V. Vaštakaitė
Acta Horticulturae, 2018, Number 1227, Page 669
[2]
智森 张
Hans Journal of Agricultural Sciences, 2018, Volume 08, Number 03, Page 203
[3]
Viktorija Vaštakaitė, Akvilė Viršilė, Aušra Brazaitytė, Giedrė Samuolienė, Julė Jankauskienė, Algirdas Novičkovas, and Pavelas Duchovskis
Journal of Agricultural and Food Chemistry, 2017, Volume 65, Number 31, Page 6529
[4]
Roberta Bulgari, Ada Baldi, Antonio Ferrante, and Anna Lenzi
New Zealand Journal of Crop and Horticultural Science, 2017, Volume 45, Number 2, Page 119
[5]
Kazuyoshi Kitazaki, Shin-ichi Watanabe, Akihide Okamoto, Masanori Matsuo, Shigeki Furuya, and Kunichika Sameshima
Scientia Horticulturae, 2015, Volume 185, Page 167
[6]
Sofia D. Carvalho and Kevin M. Folta
Critical Reviews in Plant Sciences, 2014, Volume 33, Number 6, Page 486
[7]

Comments (0)

Please log in or register to comment.
Log in