Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2017: 0.764
5-year IMPACT FACTOR: 0.787

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 8, Issue 2


Volume 10 (2015)

Microbial activity in drinking water-associated biofilms

Anca Farkas / Mihail Dragan-Bularda / Vasile Muntean / Dorin Ciataras / Stefan Tigan
Published Online: 2012-12-07 | DOI: https://doi.org/10.2478/s11535-013-0126-0


Microbial biofilms from surfaces in contact with water may play a beneficial role in drinking water treatment as biological filters. However, detrimental effects such as biofouling (i.e., biocorrosion and water quality deterioration) may also occur. In this study microbiological processes and factors influencing the activity of bacteria in biofilms were investigated by conventional cultivation methods. The presence of bacteria belonging to different ecophysiological groups was assessed during drinking water treatment, in biofilms developed on concrete, steel and sand surfaces. Influences of the treatment process, type of immersed material and physico-chemical characteristics of raw/bulk water and biofilms upon the dynamics of bacterial communities were evaluated. Results revealed intense microbial activity in biofilms occurring in the drinking water treatment plant of Cluj. Ammonification, iron reduction and manganese oxidation were found to be the predominant processes. Multiple significant correlations were established between the evolution of biofilm bacteria and the physico-chemical parameters of raw/ bulk water. The type of immersed material proved to have no significant influence upon the evolution of microbial communities, but the treatment stage, suggesting that the processes applied restrict microbial growth not only in bulk fluid but in biofilms, too.

Keywords: Biofilm; Drinking water treatment; Physiological processes; Biofouling effects

  • [1] Gray N.F., Drinking water quality. Problems and solutions, Cambridge University Press, New York, 2008 Google Scholar

  • [2] Costerton J.W., Structure of biofilms, In: Geesey G.G., Lewandowski Z., Flemming H.C. (Eds.), Biofouling and biocorrosion in industrial water systems, CRC Press, New York, 1994 Google Scholar

  • [3] Flemming H.C., Percival S.I., Walker J.T., Contamination potential of biofilms in water distribution systems, Wa. Sci. Technol., 2002, 2, 271–280 Google Scholar

  • [4] Rittmann B.E., Stilwell D., Ohashi A. Transientstate, multiple-species biofilm model for biofiltration processes, Water Res., 2002, 36, 2342–2356 http://dx.doi.org/10.1016/S0043-1354(01)00441-9CrossrefGoogle Scholar

  • [5] Emtiazi F., Schwartz T., Marten S.M., Krolla-Sidenstein P., Obst U., Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration, Water Res., 2004, 38, 1197–1206 http://dx.doi.org/10.1016/j.watres.2003.10.056CrossrefGoogle Scholar

  • [6] LeChevallier M.W., Au K.K., Water treatment and pathogen control, IWA Publishing, London, 2004 Google Scholar

  • [7] Bachmann R.T., Edyvean R.G.J., Biofouling: an historic and contemporary review of its causes, consequences and control in drinking water distribution systems, Biofouling, 2006, 2, 197–227 Google Scholar

  • [8] Schaule G., Griebe T., Flemming H.C., Steps in biofilm sampling and characterization in biofouling cases, In: Flemming H.C., Szewzyk U., Griebe T. (Eds)., Biofilms. Technomic, Lancaster, 2000 Google Scholar

  • [9] Exner M., Vacata V., Gebel, J., Public health aspects of the role of HPC — an introduction, In: Bartram J., Cotruvo J., Exner M., Fricker C., Glasmacher A., (Eds.), Heterotrophic plate counts and drinking water safety. The significance of HPCs for water quality and human health, IWA Publishing, London, 2003 Google Scholar

  • [10] Beech I.B., Sulfate-reducing bacteria in biofilms on metallic materials and corrosion, Microbiol. Today, 2003, 30, 115–117 Google Scholar

  • [11] Coetser S.E., Cloete T.E., Biofouling and biocorrosion in industrial water systems, Crit. Rev. Microbiol., 2005, 31, 213–232 http://dx.doi.org/10.1080/10408410500304074CrossrefGoogle Scholar

  • [12] LeChevallier M.W., Babcock T.M., Ramon G.L., Examination and characterization of distribution system biofilms, Appl. Environ. Microb., 1987, 53, 2714–2724 Google Scholar

  • [13] Echverria F., Castano J.G., Arroyave C., Penuela G., Ramirez A., Morato J., Characterization of deposits formed in a water distribution system, Ingeniare. Rev. Chil. Ing., 2009, 17, 275–281 Google Scholar

  • [14] Eichler S., Christen R., Höltje C., Westphal P., Bötel J., Brettar I., et al., Composition and dynamics of bacterial communities of a drinking water supply system as assessed by RNA- and DNA-based 16S rRNA gene fingerprinting, Appl. Environ. Microb., 2006, 72, 1858–1872 http://dx.doi.org/10.1128/AEM.72.3.1858-1872.2006CrossrefGoogle Scholar

  • [15] Seth A.D., Edyvean R.G.J., The function of sulphatereducing bacteria in corrosion of potable water mains, Int. Biodeter. Biodegr., 2006, 58, 108–111 http://dx.doi.org/10.1016/j.ibiod.2006.10.005CrossrefGoogle Scholar

  • [16] Cerrato J.M., Falkinham J.O., Dietrich A.M., Knocke W.R., McKinney C.W., Pruden A., Manganese-oxidising and -reducing microorganisms isolated from biofilms in chlorinated drinking water systems, Water Res., 2010, 44, 3935–3945 http://dx.doi.org/10.1016/j.watres.2010.04.037CrossrefGoogle Scholar

  • [17] Farkas A., Ciataras D., Biofilms in drinking water treatment plant: physiological groups of bacteria involved in corrosion, Romaqua, 2011, 74, 10–21 Google Scholar

  • [18] Farkas A., Bogatean M., Ciataras D., Bocos B., Tigan S., The new water source of Cluj brings improvements in raw water quality, In: V. Ciomos, E. Demetrescu, C. Popescu (Eds.), Proceedings of 1st Danube — Black Sea Regional Young Water Professionals Conference (14–15 June 2011, Bucharest, Romania), Estfalia, 2011, 3–9 Google Scholar

  • [19] Cusa V., Methodological instructions for microbiological analysis of water and sediments [Instructiuni metodologice pentru analiza microbiologica a sedimentelor acvatice], Institute for Research and Environmental Engineering, Bucharest, 1996, (in Romanian) Google Scholar

  • [20] Dragan-Bularda M., General microbiology — Laboratory handbook [Microbiologie generala — Lucrari practice], Babeş-Bolyai University Press, Cluj-Napoca, 2000, (in Romanian) Google Scholar

  • [21] Atlas R.M., Handbook of Microbiological Media, 3rd ed., CRC Press, New York, 2004 http://dx.doi.org/10.1201/9781420039726CrossrefGoogle Scholar

  • [22] Kandeler E., Physiological and biochemical methods for studying soil biota and their function, In: Paul E.A. (Ed.), Soil microbiology, ecology and biochemistry, Academic Press, UK, 2007 Google Scholar

  • [23] Overmann J., Novel cultivation strategies for environmentally important microorganisms, In: Barton L.L., Loy A., Mandl M. (Eds.), Geomicrobiology: molecular and environmental perspective, Springer Science and Business Media, 2010 Google Scholar

  • [24] Tigan S., Achimas A., Drugan S., Course in computer science and medical statistics [Curs de informatica si statistica medicala], Srima Press, Cluj-Napoca, 2001, (in Romanian) Google Scholar

  • [25] Rosner B., Fundamentals of biostatistics, Duxbury Press, New York, 2005 Google Scholar

  • [26] Lumperdeanu M., Dragan-Bularda M., Studies on some ecological groups of bacteria from the Gilau dam lake — Cluj County [Studii asupra unor grupe ecologice de bacterii din lacul de acumulare Gilau — judetul Cluj], Stud. Univ. Babes-Bol. Biologia, 2003, 1, 103–113, (in Romanian) Google Scholar

  • [27] Curticapean M., Dragan-Bularda M., The quantitative distribution of some ecological groups of bacteria from the Tarnita dam reservoir, Stud. Univ. Babes-Bol. Biologia, 2005, 2, 147–163 Google Scholar

  • [28] Panova A., Dimkov R., Depth distribution of freshwater microorganisms and physicochemical characteristics in Iskar reservoir, Biotechnol. & Biotechnol. Eq., 2008, 22, 560–565 CrossrefGoogle Scholar

  • [29] Sipkoska-Gastarova B., Atanasova-Pancevska N., Kungulovski D., Kungulovski I., Presence of nitrogen cycle bacteria in the water of Strezevo reservoir. Balkans Water Observation and Information System, 2008, http://balwois.com/balwois/administration/full_paper/ffp-1377.pdf Google Scholar

  • [30] Ginige M.P., Wylie J., Plumb J., Influence of biofilms on iron and manganese deposition in drinking water distribution systems, Biofouling, 2011, 27, 151–163 http://dx.doi.org/10.1080/08927014.2010.547576CrossrefGoogle Scholar

  • [31] Sheng X., Ting Y.P., Pehkonen S.O., The influence of ionic strength, nutrients and pH on bacterial adhesion to metals, J. Colloid. Interface. Sci., 2008, 321, 256–264 http://dx.doi.org/10.1016/j.jcis.2008.02.038CrossrefGoogle Scholar

  • [32] Beale D.J., Dunn, M.S., Morrison, P.D., Porter, N.A., Marlow, D. Characterisation of bulk water samples fromcopper pipes undergoing microbially influenced corrosion by diagnostic metabolomic profiling, Corros. Sci., 2012, 55, 272–279 http://dx.doi.org/10.1016/j.corsci.2011.10.026CrossrefGoogle Scholar

  • [33] Authority of Public Health of Cluj County, Report on drinking water supply in Cluj County, 2010, electronic report, (in Romanian) Google Scholar

  • [34] Fry J.C., Functional roles of the major groups of bacteria associated with detritus, In: Moriarty D.J.W., Pullin R.S.V., (Eds.), Detritus and microbial ecology in aquaculture, International Center for Living Aquatic Resources Management, Manila, 1987 Google Scholar

  • [35] Cameron I., Bourgine F., New frontier — biological iron and manganese removal from drinking water, Institute of Public Works Engineered Australia, Sydney, 1999 Google Scholar

  • [36] Hope C.K., Bott T.R., Laboratory modelling of manganese biofiltration using biofilms of Leptothrix discophora, Water Res., 2004, 38, 1853–1861 http://dx.doi.org/10.1016/j.watres.2003.12.031CrossrefGoogle Scholar

  • [37] de Vet W., Biological drinking water treatment of anaerobic groundwater in trickling filters, PhD Thesis, Technical University, Delft, The Netherlands, 2011 Google Scholar

  • [38] Ivanov V., Chu J., Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ, Rev. Environ. Sci. Biotechnol., 2008, 7, 139–153 http://dx.doi.org/10.1007/s11157-007-9126-3CrossrefGoogle Scholar

  • [39] Farkas A., Dragan-Bularda M., Ciataras D., Bocos B., Tigan S., Opportunistic pathogens and faecal indicators in drinking water associated biofilms in Cluj, Romania, J. Water Health, 2012, 10, 471–483 http://dx.doi.org/10.2166/wh.2012.148CrossrefGoogle Scholar

  • [40] Garrity G.M., Brenner D.J., Krieg N.R., Staley J.T., Bergey’s Manual of Systematic Bacteriology, Vol. 2. The Proteobacteria, Bergey’s Manual Trust, Michigan, 2005 Google Scholar

  • [41] Holmes P., Nicolls L.M., Aeromonads in drinking-water supplies: their occurrence and significance, Water Environ. J., 1995, 9, 464–469 http://dx.doi.org/10.1111/j.1747-6593.1995.tb01484.xCrossrefGoogle Scholar

  • [42] McLeod E.S., Dawood Z., MacDonald R., Oosthuizen M.C., Graf J., Steyn P.L., et al., Isolation and identification of sulphite- and iron reducing, hydrogenase positive facultative anaerobes from cooling water systems, Syst. Appl. Microbiol., 1998, 21, 297–305 http://dx.doi.org/10.1016/S0723-2020(98)80037-4CrossrefGoogle Scholar

  • [43] Seshadri R., Joseph S.W., Chopra A.K., Sha J., Shaw J., Graf J., et al., Genome sequence of Aeromonas hydrophila ATCC 7966T: Jack of all trades, J. Bacteriol., 2006, 188, 8272–8282 http://dx.doi.org/10.1128/JB.00621-06CrossrefGoogle Scholar

  • [44] Banning N., Toze S., Mee B.J., Persistence of biofilm-associated Escherichia coli and Pseudomonas aeruginosa in groundwater and treated effluent in a laboratory model system, Microbiology, 2003, 149, 47–55 http://dx.doi.org/10.1099/mic.0.25938-0CrossrefGoogle Scholar

  • [45] Folsom J.P., Richards L., Pitts B., Roe F., Ehrlich G.D., Parker A., et al., Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis, BMC Microbiol., 2010, 10, 294 http://dx.doi.org/10.1186/1471-2180-10-294CrossrefGoogle Scholar

  • [46] Lee D.G., Kim S.J., Bacterial species in biofilm cultivated from the end of Seoul water distribution system, J. Appl. Microbiol., 2003, 95, 317–324 http://dx.doi.org/10.1046/j.1365-2672.2003.01978.xCrossrefGoogle Scholar

  • [47] Whitman W.B., Parte A.C., De Vos P., Garrity G.M., Jones D., Krieg N.R., et al., Bergey’s Manual of Systematic Bacteriology, Vol 3. The Firmicutes. Bergey’s Manual Trust, Athens, 2009 Google Scholar

About the article

Published Online: 2012-12-07

Published in Print: 2013-02-01

Citation Information: Open Life Sciences, Volume 8, Issue 2, Pages 201–214, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-013-0126-0.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

O. V. Kravchenko
Biotechnologia Acta, 2018, Volume 11, Number 5, Page 49
O. V. Kravchenko
Biotechnologia Acta, 2018, Volume 11, Number 3, Page 78
Cristina Cattò, Federica Villa, and Francesca Cappitelli
Critical Reviews in Microbiology, 2018, Volume 44, Number 5, Page 633
D.J. Beale, R. Barratt, D.R. Marlow, M.S. Dunn, E.A. Palombo, P.D. Morrison, and C. Key
Biofouling, 2013, Volume 29, Number 3, Page 283

Comments (0)

Please log in or register to comment.
Log in