Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 8, Issue 4

Issues

Volume 10 (2015)

Phylogenetic relations of the dinoflagellate Gymnodinium baicalense from Lake Baikal

Natalia Annenkova
  • Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033, Irkutsk, Russia
  • Aquatic Ecology Unit, Department of Biology, Lund University, 22362, Lund, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-02-09 | DOI: https://doi.org/10.2478/s11535-013-0144-y

Abstract

Freshwater dinoflagellates still remain poorly studied by modern biological methods. This lack of knowledge prevents us from understanding the evolution and colonization patterns of these ecologically important protists. Gymnodinium baicalense is the most abundant, and possibly endemic, planktonic dinoflagellate from the ancient Lake Baikal. This dinoflagellate species blooms in the spring under the ice. This study analyzed the origin of this Baikalian dinoflagellate using three markers (two ribosomal and one mitochondrial DNA). It was found that this species is a true member of the order Gymnodiniales and has close relatives in the glacial melt waters of the Arctic Ocean. It seems that G. baicalense has diversified relatively recently from the arctic marine gymnodinioids. These results shed light on dinoflagellate biogeography and their colonizations in Lake Baikala biodiversity hotspot.

Keywords: Protists; Baikal; Biogeography; Evolution; 18S rRNA gene; ITS-2; COI

  • [1] Anderson D.M., Toxic algal blooms and red tides: a global perspective, In: Okaichi T., Anderson D.M., Nemoto T. (Eds.), Red Tides: Biology, Environmental Science and Toxicology, Elsevier, 1989 Google Scholar

  • [2] Taylor F.J.R., Hoppenrath M., Saldarriaga J.F., Dinoflagellate diversity and distribution, Biodiv. Cons., 2008, 17, 407–418 http://dx.doi.org/10.1007/s10531-007-9258-3CrossrefGoogle Scholar

  • [3] Finlay B.J., Global dispersal of free-living microbial eukaryote species, Science, 2002, 296, 1061–1063 http://dx.doi.org/10.1126/science.1070710CrossrefGoogle Scholar

  • [4] Foisner W., Protist diversity and distribution: some basic considerations, Biodivers. Conserv., 2008 17, 235–242 http://dx.doi.org/10.1007/s10531-007-9248-5CrossrefGoogle Scholar

  • [5] Gómez F., Endemic and Indo-Pacific plankton in the Mediterranean Sea: a study based on dinoflagellate records, J. Biogr., 2006, 33, 261–270 http://dx.doi.org/10.1111/j.1365-2699.2005.01373.xCrossrefGoogle Scholar

  • [6] Fawley M.J., Fawley K.P., Buchheim M.A., Molecular diversity among communities of freshwater microchlorophytes, Microb. Ecol., 2004, 48, 489–499 http://dx.doi.org/10.1007/s00248-004-0214-4CrossrefGoogle Scholar

  • [7] Mats V.D., Khlystov O.M., De Batist M., Ceramicola S., Lomonosova T.K., Klimansky A., Evolution of the Academician Ridge Accommodation Zone in the central part of the Baikal Rift, from high-resolution reflection seismic profiling and geological field investigations, Intern. J. Earth. Sci., 2000, 89, 229–250 http://dx.doi.org/10.1007/s005310000094CrossrefGoogle Scholar

  • [8] Kozhova O.M., Izmestéva L.R., Lake Baikal: evolution and biodiversity, Backhuys Publ., Leiden, 1998 Google Scholar

  • [9] Annenkova N.V., Lavrov D.V., Belikov S.I., Dinoflagellates associated with freshwater sponges from the ancient Lake Baikal, Protist, 2011, 162, 222–236 http://dx.doi.org/10.1016/j.protis.2010.07.002CrossrefGoogle Scholar

  • [10] Antipova N.L., New species of the genera Gymnodinium Stein (Gymnodiniaceae) in the lake Baikal, Dokl. Acad. Sci. USSR, 1955, 103, 325–328 (in Russian) Google Scholar

  • [11] Saldarriaga J.F., Taylor F.J.R., Cavalier-Smith T., Menden-Deuer S., Keeling P.J., Molecular data and the evolutionary history of dinoflagellates, Eur. J. Protistol., 2004, 40, 85–111 http://dx.doi.org/10.1016/j.ejop.2003.11.003CrossrefGoogle Scholar

  • [12] Annenkova N.V., Belykh O.I., Denikina N.N., Belikov S.I., Identification of dinoflagellates from the Lake Baikal on the basis of molecular genetic data, Dokl. Biol. Sci., 2009, 426, 253–256 http://dx.doi.org/10.1134/S0012496609030181CrossrefGoogle Scholar

  • [13] Hall T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucl. Acids. Symp., 1999, 41, 95–98 Google Scholar

  • [14] Castresana J., Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis, Mol. Biol. Evol., 2000, 17, 540–552 http://dx.doi.org/10.1093/oxfordjournals.molbev.a026334CrossrefGoogle Scholar

  • [15] Katoh K., Toh H., Recent developments in the MAFFT multiple sequence alignment program, Brief. Bioinform, 2008, 9, 286–298 http://dx.doi.org/10.1093/bib/bbn013CrossrefGoogle Scholar

  • [16] Posada D., ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online, Nucleic Acids Res., 2006, 34, W700–W703 http://dx.doi.org/10.1093/nar/gkl042CrossrefGoogle Scholar

  • [17] Ronquist F., Huelsenbeck J.P., MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, 2003, 19, 1572–1574 http://dx.doi.org/10.1093/bioinformatics/btg180CrossrefGoogle Scholar

  • [18] Criscuolo A., morePhyML: Improving the phylogenetic tree space exploration with PhyML 3, Mol. Phyl. Evol., 2011, 61, 944–948 http://dx.doi.org/10.1016/j.ympev.2011.08.029CrossrefGoogle Scholar

  • [19] Litaker R.W., Vandersea M.W., Kibler S.R., Stokes N.A., Lutzoni F. M., Yonish B.A., et al., Recognising dinoflagellate species using ITS rDNA sequences, J. Phycol., 2007, 43, 344–355 http://dx.doi.org/10.1111/j.1529-8817.2007.00320.xCrossrefGoogle Scholar

  • [20] Hansen G., Botes L., De Salas M., Ultrastructure and large subunit rDNA sequences of Lepidodinium viride reveal a close relationship to Lepidodinium chlorophorum comb. nov. (=Gymnodinium chlorophorum), Phycol. Res., 2007, 55, 25–41 http://dx.doi.org/10.1111/j.1440-1835.2006.00442.xCrossrefGoogle Scholar

  • [21] Stern R.F., Horak A., Andrew R.L., Coffroth M.A., Anderson R.A., Kupper F.C., et al., Environmental barcoding reveals massive dinoflagellate diversity in marine environments, Plos One, 2010, 5, e13991 http://dx.doi.org/10.1371/journal.pone.0013991CrossrefGoogle Scholar

  • [22] Daugbjerg N., Hansen G., Larsen J., Moestrup Ø., Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates, Phycologia, 2000, 39, 302–317 http://dx.doi.org/10.2216/i0031-8884-39-4-302.1CrossrefGoogle Scholar

  • [23] Logares R., Shalchian-Tabrizi K., Boltovskoy A., Rengefors K., Extensive dinoflagellate phylogenies indicate infrequent marine-freshwater transitions, Mol. Phylogenet. Evol., 2007, 45, 887–903 http://dx.doi.org/10.1016/j.ympev.2007.08.005CrossrefGoogle Scholar

  • [24] Hansen G., Daugbjerg N., Henriksen P., Comparative study of Gymnodinium mikomotoi and Gymnodinium aureolum comb. nov. ( = Gyrodinium aureolum) based on morphology, pigment composition and molecular data, J. Phycol., 2000, 36, 394–410 http://dx.doi.org/10.1046/j.1529-8817.2000.99172.xCrossrefGoogle Scholar

  • [25] Luo W., Li H., Cai M., He J., Diversity of microbial eukaryotes in Kongsfjorden, Svalbard, Hydrobiol., 2009, 636, 233–248 http://dx.doi.org/10.1007/s10750-009-9953-zCrossrefGoogle Scholar

  • [26] Bondarenko N.A., Ecology and taxonomy diversity of planktonic algae in mountain lakes from the Eastern Siberia. Dr. Sci. thesis, Institute for Biology of Inland Waters RAS, Borok, Russia, 2009 (in Russian) Google Scholar

  • [27] Mertens K.N., Rengefors K., Moestrup Ø., Ellegaard M., A review of recent freshwater dinoflagellate cysts: taxonomy, phylogeny, ecology and palaeocology, Phycologia, 2012, 51, 612–619 http://dx.doi.org/10.2216/11-89.1CrossrefGoogle Scholar

  • [28] Nielsen M.V., Tønseth C.P., Temperature and salinity effect on growth and chemical composition of Gyrodinium aureolum Hulbert in culture, J. Plankton. Res., 1991, 13, 389–398 http://dx.doi.org/10.1093/plankt/13.2.389CrossrefGoogle Scholar

  • [29] Genkal S.I., Bondarenko N.A., Are the Lake Baikal diatoms endemic? Hydrobiol., 2006, 568, 143–153 http://dx.doi.org/10.1007/s10750-006-0321-yCrossrefGoogle Scholar

About the article

Published Online: 2013-02-09

Published in Print: 2013-04-01


Citation Information: Open Life Sciences, Volume 8, Issue 4, Pages 366–373, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-013-0144-y.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ivan S. Mikhailov, Yulia R. Zakharova, Yuri S. Bukin, Yuri P. Galachyants, Darya P. Petrova, Maria V. Sakirko, and Yelena V. Likhoshway
Microbial Ecology, 2018
[2]
Thangavelu Boopathi, Daphne Georgina Faria, Man-Duck Lee, Juyun Lee, Man Chang, and Jang-Seu Ki
Polar Biology, 2015, Volume 38, Number 2, Page 179

Comments (0)

Please log in or register to comment.
Log in