Jump to ContentJump to Main Navigation
Show Summary Details

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

Managing Editor: Michalczyk, Katarzyna


IMPACT FACTOR increased in 2015: 0.814
5-year IMPACT FACTOR: 0.870

SCImago Journal Rank (SJR) 2015: 0.362
Source Normalized Impact per Paper (SNIP) 2015: 0.538
Impact per Publication (IPP) 2015: 0.929

Open Access
Online
ISSN
2391-5412
See all formats and pricing



Select Volume and Issue

Issues

The role of adipose derived stem cells, smooth muscle cells and low intensity laser irradiation (LILI) in tissue engineering and regenerative medicine

1Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 2028, Doornfontein, South Africa

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Life Sciences. Volume 8, Issue 4, Pages 331–336, ISSN (Online) 2391-5412, DOI: 10.2478/s11535-013-0145-x, February 2013

Publication History

Published Online:
2013-02-09

Abstract

Tissue engineering and regenerative medicine has become the treatment of choice for several degenerative diseases. It involves the repairing or replacing of diseased or damaged cells or tissues. Stem cells have a key role to play in this multidisciplinary science because of their capacity to differentiate into several lineages. Adipose derived stem cells (ADSCs) are adult mesenchymal stem cells that are easily harvested and have the capacity to differentiate into cartilage, bone, smooth muscle, fat, liver and nerve cells. ADSCs have been found to differentiate into smooth muscle cells which play major roles in diseases such as asthma, hypertension, cancer and arteriosclerosis. Low Intensity Laser Irradiation (LILI), which involves the application of monochromatic light, has been found to increase viability, proliferation and differentiation in several types of cells including ADSCs. This review discusses the role of ADSCs, smooth muscle cells and LILI in the science of tissue engineering and regenerative medicine.

Keywords: Adipose Derived Stem Cells; Smooth muscle cells; Low Intensity Laser Irradiation; Tissue engineering and regenerative medicine

  • [1] Butler D.L., Gostein S.A., Guilak, F., Functional Tissue Engineering: The Role of Biomechanics, J. Biomed. Eng., 2000, 122, 570–575

  • [2] Roche R., Hoareau L., Mounet F., Festy F., Adult Stem Cells for Cardiovascular Diseases: The Adipose Tissue Potential, Expert. Opin. Biol. Th., 2007, 7, 1–8 http://dx.doi.org/10.1517/14712598.7.6.791 [Crossref]

  • [3] Jang S., Cho H., Cho Y., Park J., Jeong H., Functional Neural Differentiation of Human Adipose Tissue-Derived Stem Cells using bFGF and Forskolin, BMC Cell Biol., 2010, 11, 25, DOI:10.1186/1471-2121-11-25 http://dx.doi.org/10.1186/1471-2121-11-25 [Crossref]

  • [4] Lin F., Josephs S.T., Alexandrescu D.T., Ramos F., Bogin V., Gammill V., et al., Lasers, Stem Cells, and COPD, J. Translat. Med., 2010, 8, 16, DOI:10.1186/1479-5876-8-16 http://dx.doi.org/10.1186/1479-5876-8-16 [Crossref]

  • [5] Mvula B., Mathope T., Moore T.J., Abrahamse H., The Effects of Low Level Laser Irradiation on Human Adipose Derived Stem Cells, Laser Med. Sci., 2008, 23, 277–282 http://dx.doi.org/10.1007/s10103-007-0479-1 [Crossref]

  • [6] Fraser J.K., Wulur I., Alfonso Z., Hedrick M., Fat Tissue: An Underappreciated Source of Stem cells for Biotechnology, Trends Biotech., 2006, 24, 150–115 http://dx.doi.org/10.1016/j.tibtech.2006.01.010 [Crossref]

  • [7] Huh C.H., Kim S.Y., Cho H.J., Kim D.S., Lee W.H., Kwon S.B., et al., Effects of Mesenchymal Stem Cells in the Reconstruction of Skin Equivalents, J. Dermalog. Sci., 2000, 46, 217–220 http://dx.doi.org/10.1016/j.jdermsci.2007.01.005 [Crossref]

  • [8] de Villiers J.A., Houreld N.N., Abrahamse H., Influence of Low Intensity Laser Irradiation on Isolated Human Adipose Derived Stem Cells over 72hrs and Their Differentiation Potential into Smooth Muscle Cells Using Retinoic Acid, Stem Cell Rev. Rep., 2011, 7, 869–882 http://dx.doi.org/10.1007/s12015-011-9244-8 [Crossref]

  • [9] Spradling A., Drummond-Barbosa D., Kai T., Stem Cells find their Niche, Nature, 414, 98–104

  • [10] Reya T., Morrison S., Clarke M.F., Weissman I., Stem Cells, Cancer, Cancer Stem Cells, Nature, 2001, 414, 105–111 http://dx.doi.org/10.1038/35102167 [Crossref]

  • [11] Ballas C.B., Zielske S.P., Gerson S.L., Adult Bone Marrow Stem Cells for Cell and Gene Therapies: Implications for greater use, J. Cell Biochem. Sup., 2002, 38, 20–28 http://dx.doi.org/10.1002/jcb.10127 [Crossref]

  • [12] Ramsay M.A.E., Will Stem Cells Transform Medicine, Proc. Bayl. Univ. Med. Cent., 2002, 15, 135–137

  • [13] Conrad C., Huss R., Adult Stem Cells Lines in Regenerative Medicine and Reconstructive Surgery, J. Surg. Res., 2005, 124, 201–208 http://dx.doi.org/10.1016/j.jss.2004.09.015 [Crossref]

  • [14] Pelled G.G.T., Aslan H., Gazit Z., Gazit D., Mesenchymal Stem Cells for Bone Gene Therapy and Tissue Engineering, Curr. Pharma. Design, 2002, 8, 1917–1928 http://dx.doi.org/10.2174/1381612023393666 [Crossref]

  • [15] Habib N.A., Levicar N., Jiao L., Black G.T., Stem Cell Repair and Regeneration, Imperial College Press, World Scientific Publishing, 2005

  • [16] Minguell J.J., Erices A., Conget P., Mesenchymal Stem Cells, Exper. Biol. Med., 2001, 226, 507–520

  • [17] Suh H., Tissue Restoration, Tissue Engineering and Regenerative Medicine, Yonsei Med. J., 2000, 41, 681–684 [Crossref]

  • [18] Kaji E.H., Leiden J.M., Gene and Stem Cell Therapies, J. Amer. Med. Ass., 2001, 285, 545–550 http://dx.doi.org/10.1001/jama.285.5.545 [Crossref]

  • [19] Perry D., Patients’ Voices: The Powerful Sound in the Stem Cell Debate, Science, 2000, 287, 1423 http://dx.doi.org/10.1126/science.287.5457.1423 [Crossref]

  • [20] Young F.E., A Time for Restraint, Science, 2007, 287, 1424 http://dx.doi.org/10.1126/science.287.5457.1424 [Crossref]

  • [21] Gamillion C.T., Burg K.J.L., Stem Cells and Adipose Tissue Engineering, Biomat., 2006, 27, 6052–6063 http://dx.doi.org/10.1016/j.biomaterials.2006.07.033 [Crossref]

  • [22] Peroni D., Scambi I., Pasini A., Lisi V., Bifari F., Krampera M., et al., Stem Molecular Signature of Adipose-Derived Stromal Cells, Exper. Cell Res., 2008, 314, 603–615 http://dx.doi.org/10.1016/j.yexcr.2007.10.007 [Crossref]

  • [23] Strem B.M., Hedrick M.H., The growing Importance of Fat in Regenerative Medicine, Trends Biotech., 2005, 23, 64–66 http://dx.doi.org/10.1016/j.tibtech.2004.12.003 [Crossref]

  • [24] Strem B.M., Hicok K.C., Zhu M., Wulur I., Alfonso Z., Schreiber R.E., Multipotential Differentiation of Adipose Tissue-Derived Stem Cells, Keio J. Med., 2005, 54, 132–141 http://dx.doi.org/10.2302/kjm.54.132 [Crossref]

  • [25] Zuk P.A., Zhu M., Mizuno H., Huang J., Furtell J.W., Kartz A.J., Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies, Tissue Eng., 2001, 7, 211–228 http://dx.doi.org/10.1089/107632701300062859 [Crossref]

  • [26] Van Dijk A., Niessen H.W.M., Zandieh Doulabi B., Visser F. C., van Milligen F.J., Differentiation of Human Adipose-Derived Stem Cells towards Cardiomyocytes is Facilitated by Laminin, Cell Tissue Res., 2008, 334, 457–467 http://dx.doi.org/10.1007/s00441-008-0713-6 [Crossref]

  • [27] Rodriguez L.V., Alfonso Z., Zhang R., Leung J., Wu B., Ignarro L.J., Clonogenic Multipotent Stem Cells in Human Adipose Tissue Differentiate into Functional Smooth Muscle Cells, Proc. Nat. Acad. Sci., 2006, 103, 12167–12172 http://dx.doi.org/10.1073/pnas.0604850103 [Crossref]

  • [28] Mvula B., Moore T., Abrahamse H., Effects of Low-Level Laser Irradiation and Epidermal Growth Factor on Adult Human Adipose-Derived Stem Cells, Laser Med. Sci. 2010, 25, 33–39 http://dx.doi.org/10.1007/s10103-008-0636-1 [Crossref]

  • [29] Jang S., Cho H., Cho Y., Park J., Jeong H., Functional Neural differentiation of Human AdiposeTissue-Derived Stem Cells using bFGF and Forskolin, Cell Biol., 2010, 11, 25

  • [30] Vet-Stem Regenerative Veterinary Medicine, 2008, http://www.marketwire.com/pressrelease/vet-stem-announces-milestone-of8000-animals-treated-with-vet-stem-cell-therapy-1611912.htm

  • [31] Riordan N.H., Ichim T.E., Min W.P., Wang H., Solano H., Lara F., et al., Non-Expanded Adipose Stromal Vascular Fraction Cell Therapy for Multiple Sclerosis, J. Translat. Med., 2009, 7, 29, DOI: 10.1186/1479-5876-7-29 http://dx.doi.org/10.1186/1479-5876-7-29 [Crossref]

  • [32] Tholpady S.S., Llull R., Ogle R.C., Rubin J.P., Futrell J. W., Katz A.J., Adipose Tissue: Stem Cells and Beyond, Clin. Plastic Surg., 2006, 33, 55–62 http://dx.doi.org/10.1016/j.cps.2005.08.004 [Crossref]

  • [33] Giorgino F., Laviola L., Eriksson J.W., Regional Differences of Insulin Action in Adipose Tissue: Insights from in vivo and in vitro Studies, Acta Physiol. Scandanavica, 2005, 185, 13–30 http://dx.doi.org/10.1111/j.1365-201X.2004.01385.x [Crossref]

  • [34] Sinha S., Wamhoff B.R., Hoofnagle M.H., Thomas J., Neppi, R.L., Deering T., Assessment of Contractility of Purified Smooth Muscle Cells Derived from Embryonic Stem Cells, Stem Cells, 2006, 24, 1678–1688 http://dx.doi.org/10.1634/stemcells.2006-0002 [Crossref]

  • [35] Yang Y., Relan N K., Przywara D.A., Schugar L., Embryonic Mesenchymal Cell Share the Potential for Smooth Muscle Differentiation: Myogenesis is Controlled by the Cell, shape, Development, 1999, 126, 3027–3033

  • [36] Narita Y., Yamawaki A., Kagami H., Ueda M., Ueda Y., Effects of Transforming Growth Factor-Beta1 and Ascorbic Acid on Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Smooth Muscle Cell Lineage, Cell Tissue Res., 2008, 333, 449–459 http://dx.doi.org/10.1007/s00441-008-0654-0

  • [37] Mvula B., Abrahamse H., Adipose Derived Stem cells and Low Intensity Laser Irradiation: Potential Use in Regenerative Medicine, Proc. South Afric. Inst. Phys., 2011, 707–710

  • [38] Abrahamse H., The Use of Laser Irradiation To Stimulate Adipose Derived Stem Cell Proliferation and Differentiation for Use in Autologous Grafts, Amer. Inst. Phys., 2009, 1172, 95–100

  • [39] Renno A.C.M, McDonnell P.A, Parizotto P.A., Laakso E.L., The Effects of Laser Irradiation on Osteobast and Osteosarcoma Cell Prolifertion and Differentiation in Vitro, Photomed. Laser Surg., 2007, 25, 275–280 http://dx.doi.org/10.1089/pho.2007.2055 [Crossref]

  • [40] Gimble J.M., Katz A.J., Bunnell B.A., Adipose-Derived Stem Cells for Regenerative Medicine, Circ. Res., 2007, 100, 1249–1260 http://dx.doi.org/10.1161/01.RES.0000265074.83288.09 [Crossref]

  • [41] Zuk P.A., Zhu M., Mizuno H., Huang J., Furtell J.W., Kartz A.J., et al., Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies, Tissue Eng., 2001, 7, 211–228 http://dx.doi.org/10.1089/107632701300062859 [Crossref]

  • [42] Kim J.M., Lee S., Chu K., Jung K., Song E., Kim S., Systemic Transplantation of Human Adipose Stem cells attenuated Cerebral Inflammation and Degeneration in a Hemorrhagic Stroke Model, Brain Res., 2007, 1183, 43–50 http://dx.doi.org/10.1016/j.brainres.2007.09.005 [Crossref]

  • [43] Garcia-Olmo D., Garcia-Arranz M., Herrers D., Expanded Adipose-Derived Stem Cells for the Treatment of Complex Perianal Fistula including Crohn,s Disease, Expert Opin. Biol. Th., 2008, 8, 417–1423 http://dx.doi.org/10.1517/14712598.8.9.1417 [Crossref]

  • [44] Kachgal S., Putnam A.J., Mesenchymal Stem Cells from Adipose and Bone Marrow promote Angiogenesis via Disctinct Cytokine and Protease Expression Mechanisms, Angiogenesis, 2011, 14, 47–59 http://dx.doi.org/10.1007/s10456-010-9194-9 [Crossref]

  • [45] Spees J.L., Olson S.D., Whitney M.J. Prockop D.J., Mitochondrial Transfer between Cells can Rescue Aerobic Respiration, Proc.Nat. Acad. Sci., USA, 2006, 103, 1283–1288 http://dx.doi.org/10.1073/pnas.0510511103 [Crossref]

  • [46] Kalbermatten D.F., Shaakxs D., Kingham P.J., Wiberg, M., Neurotrophic Activity of Human Adipose Stem Cells Isolated from Deep and Superficial Layers of Abdominal Fat, Cell Tissue Res., 2011, 344, 251–260 http://dx.doi.org/10.1007/s00441-011-1142-5 [Crossref]

  • [47] Ogawa S., Miyagawa S., Potentials of Regenerative Medicine for Liver Disease, Surg. Today, 2009, 39, 1019–1025 http://dx.doi.org/10.1007/s00595-009-4056-z [Crossref]

  • [48] Schuldiner M., Yanuka O., Itskovitz-Eldor J., Melton D.A., Benvenisty N., Effects of Eight Growth Factors on the Differentiation of Cells Derived from Human Embryonic Stem Cells, Proc. Nat. Acad. Sci., 2000, 97, 11307–11312 http://dx.doi.org/10.1073/pnas.97.21.11307 [Crossref]

  • [49] Shapiro A.M., Ricordi C., Hering B.J., Auchinclos H., Lindblad R., Robertson R.P., et al., International Trial of the Edmonton Protocol for Islet Transplantation, New Eng. J. Med., 2006, 355, 1318–1330 http://dx.doi.org/10.1056/NEJMoa061267 [Crossref]

  • [50] Couri C.E., Oliveira M.C., Stracieri A.B., Moraes D.A., Pieroni F., Barros G.M., et al., C-peptide Levels and Insulin Independence following Autologous Nonmyeloablative Hematopoietic Stem Cell Transplantation in Newly Diagnosed Type 1 Diabetic Mellitus, J. Amer. Med. Assoc., 2009, 301, 1573–1579 http://dx.doi.org/10.1001/jama.2009.470

  • [51] Abrahamse H., Houreld N.N., Muller S., Ndhlovu L., Fluence and Wavelength of Low Intensity Laser Irradiation Affect Activity and Proliferation of Human Adipose Derived Stem Cells, Med. Tech. SA, 2010, 24, 9–14

  • [52] Harris L.J., Abdollahi H., Zhang P., Mcllhenny S., Tulenko T.N., DiMuzio P.J., Differentiation of Adult Stem Cells into Smooth Muscle Cells for Vascular Tissue Engineering, J. Surg. Res., 2011, 168, 306–314 http://dx.doi.org/10.1016/j.jss.2009.08.001 [Crossref]

  • [53] Nakagami H., Maeda K., Morishita R., Iguchi S., Nishikawa T., Takami Y., et al., Novel Autologous Cell Therapy in Ischemic Limb Disease Through Growth Factor Secretion by Cultured Adipose Tissue-Derived Stromal Cells, Arteriosclerosis Thrombosis Vasc. Biol., 2005, 25, 2542–2547 http://dx.doi.org/10.1161/01.ATV.0000190701.92007.6d [Crossref]

  • [54] Shoji T., Li M., Mifune Y., Matsumoto T., Kawamoto A., Kwon S., et al., Local Transplantation of Human Multipotent Adipose-Derived Stem Cells Accelerates Fracture Healing via Enhanced Osteogenesis and Angiogenesis, Lab. Investig., 2010, 90, 637–649 http://dx.doi.org/10.1038/labinvest.2010.39 [Crossref]

Comments (0)

Please log in or register to comment.