Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2017: 0.764
5-year IMPACT FACTOR: 0.787

CiteScore 2017: 0.88

SCImago Journal Rank (SJR) 2017: 0.271
Source Normalized Impact per Paper (SNIP) 2017: 0.545

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 8, Issue 4


Volume 10 (2015)

The role of adipose derived stem cells, smooth muscle cells and low intensity laser irradiation (LILI) in tissue engineering and regenerative medicine

Bernard Mvula / Heidi Abrahamse
Published Online: 2013-02-09 | DOI: https://doi.org/10.2478/s11535-013-0145-x


Tissue engineering and regenerative medicine has become the treatment of choice for several degenerative diseases. It involves the repairing or replacing of diseased or damaged cells or tissues. Stem cells have a key role to play in this multidisciplinary science because of their capacity to differentiate into several lineages. Adipose derived stem cells (ADSCs) are adult mesenchymal stem cells that are easily harvested and have the capacity to differentiate into cartilage, bone, smooth muscle, fat, liver and nerve cells. ADSCs have been found to differentiate into smooth muscle cells which play major roles in diseases such as asthma, hypertension, cancer and arteriosclerosis. Low Intensity Laser Irradiation (LILI), which involves the application of monochromatic light, has been found to increase viability, proliferation and differentiation in several types of cells including ADSCs. This review discusses the role of ADSCs, smooth muscle cells and LILI in the science of tissue engineering and regenerative medicine.

Keywords: Adipose Derived Stem Cells; Smooth muscle cells; Low Intensity Laser Irradiation; Tissue engineering and regenerative medicine

  • [1] Butler D.L., Gostein S.A., Guilak, F., Functional Tissue Engineering: The Role of Biomechanics, J. Biomed. Eng., 2000, 122, 570–575 Google Scholar

  • [2] Roche R., Hoareau L., Mounet F., Festy F., Adult Stem Cells for Cardiovascular Diseases: The Adipose Tissue Potential, Expert. Opin. Biol. Th., 2007, 7, 1–8 http://dx.doi.org/10.1517/14712598.7.6.791CrossrefGoogle Scholar

  • [3] Jang S., Cho H., Cho Y., Park J., Jeong H., Functional Neural Differentiation of Human Adipose Tissue-Derived Stem Cells using bFGF and Forskolin, BMC Cell Biol., 2010, 11, 25, DOI:10.1186/1471-2121-11-25 http://dx.doi.org/10.1186/1471-2121-11-25CrossrefGoogle Scholar

  • [4] Lin F., Josephs S.T., Alexandrescu D.T., Ramos F., Bogin V., Gammill V., et al., Lasers, Stem Cells, and COPD, J. Translat. Med., 2010, 8, 16, DOI:10.1186/1479-5876-8-16 http://dx.doi.org/10.1186/1479-5876-8-16CrossrefGoogle Scholar

  • [5] Mvula B., Mathope T., Moore T.J., Abrahamse H., The Effects of Low Level Laser Irradiation on Human Adipose Derived Stem Cells, Laser Med. Sci., 2008, 23, 277–282 http://dx.doi.org/10.1007/s10103-007-0479-1CrossrefGoogle Scholar

  • [6] Fraser J.K., Wulur I., Alfonso Z., Hedrick M., Fat Tissue: An Underappreciated Source of Stem cells for Biotechnology, Trends Biotech., 2006, 24, 150–115 http://dx.doi.org/10.1016/j.tibtech.2006.01.010CrossrefGoogle Scholar

  • [7] Huh C.H., Kim S.Y., Cho H.J., Kim D.S., Lee W.H., Kwon S.B., et al., Effects of Mesenchymal Stem Cells in the Reconstruction of Skin Equivalents, J. Dermalog. Sci., 2000, 46, 217–220 http://dx.doi.org/10.1016/j.jdermsci.2007.01.005CrossrefGoogle Scholar

  • [8] de Villiers J.A., Houreld N.N., Abrahamse H., Influence of Low Intensity Laser Irradiation on Isolated Human Adipose Derived Stem Cells over 72hrs and Their Differentiation Potential into Smooth Muscle Cells Using Retinoic Acid, Stem Cell Rev. Rep., 2011, 7, 869–882 http://dx.doi.org/10.1007/s12015-011-9244-8CrossrefGoogle Scholar

  • [9] Spradling A., Drummond-Barbosa D., Kai T., Stem Cells find their Niche, Nature, 414, 98–104 Google Scholar

  • [10] Reya T., Morrison S., Clarke M.F., Weissman I., Stem Cells, Cancer, Cancer Stem Cells, Nature, 2001, 414, 105–111 http://dx.doi.org/10.1038/35102167CrossrefGoogle Scholar

  • [11] Ballas C.B., Zielske S.P., Gerson S.L., Adult Bone Marrow Stem Cells for Cell and Gene Therapies: Implications for greater use, J. Cell Biochem. Sup., 2002, 38, 20–28 http://dx.doi.org/10.1002/jcb.10127CrossrefGoogle Scholar

  • [12] Ramsay M.A.E., Will Stem Cells Transform Medicine, Proc. Bayl. Univ. Med. Cent., 2002, 15, 135–137 Google Scholar

  • [13] Conrad C., Huss R., Adult Stem Cells Lines in Regenerative Medicine and Reconstructive Surgery, J. Surg. Res., 2005, 124, 201–208 http://dx.doi.org/10.1016/j.jss.2004.09.015CrossrefGoogle Scholar

  • [14] Pelled G.G.T., Aslan H., Gazit Z., Gazit D., Mesenchymal Stem Cells for Bone Gene Therapy and Tissue Engineering, Curr. Pharma. Design, 2002, 8, 1917–1928 http://dx.doi.org/10.2174/1381612023393666CrossrefGoogle Scholar

  • [15] Habib N.A., Levicar N., Jiao L., Black G.T., Stem Cell Repair and Regeneration, Imperial College Press, World Scientific Publishing, 2005 Google Scholar

  • [16] Minguell J.J., Erices A., Conget P., Mesenchymal Stem Cells, Exper. Biol. Med., 2001, 226, 507–520 Google Scholar

  • [17] Suh H., Tissue Restoration, Tissue Engineering and Regenerative Medicine, Yonsei Med. J., 2000, 41, 681–684 CrossrefGoogle Scholar

  • [18] Kaji E.H., Leiden J.M., Gene and Stem Cell Therapies, J. Amer. Med. Ass., 2001, 285, 545–550 http://dx.doi.org/10.1001/jama.285.5.545CrossrefGoogle Scholar

  • [19] Perry D., Patients’ Voices: The Powerful Sound in the Stem Cell Debate, Science, 2000, 287, 1423 http://dx.doi.org/10.1126/science.287.5457.1423CrossrefGoogle Scholar

  • [20] Young F.E., A Time for Restraint, Science, 2007, 287, 1424 http://dx.doi.org/10.1126/science.287.5457.1424CrossrefGoogle Scholar

  • [21] Gamillion C.T., Burg K.J.L., Stem Cells and Adipose Tissue Engineering, Biomat., 2006, 27, 6052–6063 http://dx.doi.org/10.1016/j.biomaterials.2006.07.033CrossrefGoogle Scholar

  • [22] Peroni D., Scambi I., Pasini A., Lisi V., Bifari F., Krampera M., et al., Stem Molecular Signature of Adipose-Derived Stromal Cells, Exper. Cell Res., 2008, 314, 603–615 http://dx.doi.org/10.1016/j.yexcr.2007.10.007CrossrefGoogle Scholar

  • [23] Strem B.M., Hedrick M.H., The growing Importance of Fat in Regenerative Medicine, Trends Biotech., 2005, 23, 64–66 http://dx.doi.org/10.1016/j.tibtech.2004.12.003CrossrefGoogle Scholar

  • [24] Strem B.M., Hicok K.C., Zhu M., Wulur I., Alfonso Z., Schreiber R.E., Multipotential Differentiation of Adipose Tissue-Derived Stem Cells, Keio J. Med., 2005, 54, 132–141 http://dx.doi.org/10.2302/kjm.54.132CrossrefGoogle Scholar

  • [25] Zuk P.A., Zhu M., Mizuno H., Huang J., Furtell J.W., Kartz A.J., Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies, Tissue Eng., 2001, 7, 211–228 http://dx.doi.org/10.1089/107632701300062859CrossrefGoogle Scholar

  • [26] Van Dijk A., Niessen H.W.M., Zandieh Doulabi B., Visser F. C., van Milligen F.J., Differentiation of Human Adipose-Derived Stem Cells towards Cardiomyocytes is Facilitated by Laminin, Cell Tissue Res., 2008, 334, 457–467 http://dx.doi.org/10.1007/s00441-008-0713-6CrossrefGoogle Scholar

  • [27] Rodriguez L.V., Alfonso Z., Zhang R., Leung J., Wu B., Ignarro L.J., Clonogenic Multipotent Stem Cells in Human Adipose Tissue Differentiate into Functional Smooth Muscle Cells, Proc. Nat. Acad. Sci., 2006, 103, 12167–12172 http://dx.doi.org/10.1073/pnas.0604850103CrossrefGoogle Scholar

  • [28] Mvula B., Moore T., Abrahamse H., Effects of Low-Level Laser Irradiation and Epidermal Growth Factor on Adult Human Adipose-Derived Stem Cells, Laser Med. Sci. 2010, 25, 33–39 http://dx.doi.org/10.1007/s10103-008-0636-1CrossrefGoogle Scholar

  • [29] Jang S., Cho H., Cho Y., Park J., Jeong H., Functional Neural differentiation of Human AdiposeTissue-Derived Stem Cells using bFGF and Forskolin, Cell Biol., 2010, 11, 25 Google Scholar

  • [30] Vet-Stem Regenerative Veterinary Medicine, 2008, http://www.marketwire.com/pressrelease/vet-stem-announces-milestone-of8000-animals-treated-with-vet-stem-cell-therapy-1611912.htm Google Scholar

  • [31] Riordan N.H., Ichim T.E., Min W.P., Wang H., Solano H., Lara F., et al., Non-Expanded Adipose Stromal Vascular Fraction Cell Therapy for Multiple Sclerosis, J. Translat. Med., 2009, 7, 29, DOI: 10.1186/1479-5876-7-29 http://dx.doi.org/10.1186/1479-5876-7-29CrossrefGoogle Scholar

  • [32] Tholpady S.S., Llull R., Ogle R.C., Rubin J.P., Futrell J. W., Katz A.J., Adipose Tissue: Stem Cells and Beyond, Clin. Plastic Surg., 2006, 33, 55–62 http://dx.doi.org/10.1016/j.cps.2005.08.004CrossrefGoogle Scholar

  • [33] Giorgino F., Laviola L., Eriksson J.W., Regional Differences of Insulin Action in Adipose Tissue: Insights from in vivo and in vitro Studies, Acta Physiol. Scandanavica, 2005, 185, 13–30 http://dx.doi.org/10.1111/j.1365-201X.2004.01385.xCrossrefGoogle Scholar

  • [34] Sinha S., Wamhoff B.R., Hoofnagle M.H., Thomas J., Neppi, R.L., Deering T., Assessment of Contractility of Purified Smooth Muscle Cells Derived from Embryonic Stem Cells, Stem Cells, 2006, 24, 1678–1688 http://dx.doi.org/10.1634/stemcells.2006-0002CrossrefGoogle Scholar

  • [35] Yang Y., Relan N K., Przywara D.A., Schugar L., Embryonic Mesenchymal Cell Share the Potential for Smooth Muscle Differentiation: Myogenesis is Controlled by the Cell, shape, Development, 1999, 126, 3027–3033 Google Scholar

  • [36] Narita Y., Yamawaki A., Kagami H., Ueda M., Ueda Y., Effects of Transforming Growth Factor-Beta1 and Ascorbic Acid on Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Smooth Muscle Cell Lineage, Cell Tissue Res., 2008, 333, 449–459 http://dx.doi.org/10.1007/s00441-008-0654-0Google Scholar

  • [37] Mvula B., Abrahamse H., Adipose Derived Stem cells and Low Intensity Laser Irradiation: Potential Use in Regenerative Medicine, Proc. South Afric. Inst. Phys., 2011, 707–710 Google Scholar

  • [38] Abrahamse H., The Use of Laser Irradiation To Stimulate Adipose Derived Stem Cell Proliferation and Differentiation for Use in Autologous Grafts, Amer. Inst. Phys., 2009, 1172, 95–100 Google Scholar

  • [39] Renno A.C.M, McDonnell P.A, Parizotto P.A., Laakso E.L., The Effects of Laser Irradiation on Osteobast and Osteosarcoma Cell Prolifertion and Differentiation in Vitro, Photomed. Laser Surg., 2007, 25, 275–280 http://dx.doi.org/10.1089/pho.2007.2055CrossrefGoogle Scholar

  • [40] Gimble J.M., Katz A.J., Bunnell B.A., Adipose-Derived Stem Cells for Regenerative Medicine, Circ. Res., 2007, 100, 1249–1260 http://dx.doi.org/10.1161/01.RES.0000265074.83288.09CrossrefGoogle Scholar

  • [41] Zuk P.A., Zhu M., Mizuno H., Huang J., Furtell J.W., Kartz A.J., et al., Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies, Tissue Eng., 2001, 7, 211–228 http://dx.doi.org/10.1089/107632701300062859CrossrefGoogle Scholar

  • [42] Kim J.M., Lee S., Chu K., Jung K., Song E., Kim S., Systemic Transplantation of Human Adipose Stem cells attenuated Cerebral Inflammation and Degeneration in a Hemorrhagic Stroke Model, Brain Res., 2007, 1183, 43–50 http://dx.doi.org/10.1016/j.brainres.2007.09.005CrossrefGoogle Scholar

  • [43] Garcia-Olmo D., Garcia-Arranz M., Herrers D., Expanded Adipose-Derived Stem Cells for the Treatment of Complex Perianal Fistula including Crohn,s Disease, Expert Opin. Biol. Th., 2008, 8, 417–1423 http://dx.doi.org/10.1517/14712598.8.9.1417CrossrefGoogle Scholar

  • [44] Kachgal S., Putnam A.J., Mesenchymal Stem Cells from Adipose and Bone Marrow promote Angiogenesis via Disctinct Cytokine and Protease Expression Mechanisms, Angiogenesis, 2011, 14, 47–59 http://dx.doi.org/10.1007/s10456-010-9194-9CrossrefGoogle Scholar

  • [45] Spees J.L., Olson S.D., Whitney M.J. Prockop D.J., Mitochondrial Transfer between Cells can Rescue Aerobic Respiration, Proc.Nat. Acad. Sci., USA, 2006, 103, 1283–1288 http://dx.doi.org/10.1073/pnas.0510511103CrossrefGoogle Scholar

  • [46] Kalbermatten D.F., Shaakxs D., Kingham P.J., Wiberg, M., Neurotrophic Activity of Human Adipose Stem Cells Isolated from Deep and Superficial Layers of Abdominal Fat, Cell Tissue Res., 2011, 344, 251–260 http://dx.doi.org/10.1007/s00441-011-1142-5CrossrefGoogle Scholar

  • [47] Ogawa S., Miyagawa S., Potentials of Regenerative Medicine for Liver Disease, Surg. Today, 2009, 39, 1019–1025 http://dx.doi.org/10.1007/s00595-009-4056-zCrossrefGoogle Scholar

  • [48] Schuldiner M., Yanuka O., Itskovitz-Eldor J., Melton D.A., Benvenisty N., Effects of Eight Growth Factors on the Differentiation of Cells Derived from Human Embryonic Stem Cells, Proc. Nat. Acad. Sci., 2000, 97, 11307–11312 http://dx.doi.org/10.1073/pnas.97.21.11307CrossrefGoogle Scholar

  • [49] Shapiro A.M., Ricordi C., Hering B.J., Auchinclos H., Lindblad R., Robertson R.P., et al., International Trial of the Edmonton Protocol for Islet Transplantation, New Eng. J. Med., 2006, 355, 1318–1330 http://dx.doi.org/10.1056/NEJMoa061267CrossrefGoogle Scholar

  • [50] Couri C.E., Oliveira M.C., Stracieri A.B., Moraes D.A., Pieroni F., Barros G.M., et al., C-peptide Levels and Insulin Independence following Autologous Nonmyeloablative Hematopoietic Stem Cell Transplantation in Newly Diagnosed Type 1 Diabetic Mellitus, J. Amer. Med. Assoc., 2009, 301, 1573–1579 http://dx.doi.org/10.1001/jama.2009.470Google Scholar

  • [51] Abrahamse H., Houreld N.N., Muller S., Ndhlovu L., Fluence and Wavelength of Low Intensity Laser Irradiation Affect Activity and Proliferation of Human Adipose Derived Stem Cells, Med. Tech. SA, 2010, 24, 9–14 Google Scholar

  • [52] Harris L.J., Abdollahi H., Zhang P., Mcllhenny S., Tulenko T.N., DiMuzio P.J., Differentiation of Adult Stem Cells into Smooth Muscle Cells for Vascular Tissue Engineering, J. Surg. Res., 2011, 168, 306–314 http://dx.doi.org/10.1016/j.jss.2009.08.001CrossrefGoogle Scholar

  • [53] Nakagami H., Maeda K., Morishita R., Iguchi S., Nishikawa T., Takami Y., et al., Novel Autologous Cell Therapy in Ischemic Limb Disease Through Growth Factor Secretion by Cultured Adipose Tissue-Derived Stromal Cells, Arteriosclerosis Thrombosis Vasc. Biol., 2005, 25, 2542–2547 http://dx.doi.org/10.1161/01.ATV.0000190701.92007.6dCrossrefGoogle Scholar

  • [54] Shoji T., Li M., Mifune Y., Matsumoto T., Kawamoto A., Kwon S., et al., Local Transplantation of Human Multipotent Adipose-Derived Stem Cells Accelerates Fracture Healing via Enhanced Osteogenesis and Angiogenesis, Lab. Investig., 2010, 90, 637–649 http://dx.doi.org/10.1038/labinvest.2010.39CrossrefGoogle Scholar

About the article

Published Online: 2013-02-09

Published in Print: 2013-04-01

Citation Information: Open Life Sciences, Volume 8, Issue 4, Pages 331–336, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-013-0145-x.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in