Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2017: 0.764
5-year IMPACT FACTOR: 0.787

CiteScore 2017: 0.88

SCImago Journal Rank (SJR) 2017: 0.271
Source Normalized Impact per Paper (SNIP) 2017: 0.545

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 8, Issue 5


Volume 10 (2015)

The genetic structure of the Lithuanian wolf population

Laima Baltrūnaitė / Linas Balčiauskas / Mikael Åkesson
  • Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, SE-730 91, Riddarhyttan, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-03-07 | DOI: https://doi.org/10.2478/s11535-013-0154-9


Lithuanian wolves form part of the larger Baltic population, the distribution of which is continuous across the region. In this paper, we evaluate the genetic diversity of the Lithuanian wolf population using mitochondrial DNA analysis and 29 autosomal microsatellite loci. Analysis of the mtDNA control region (647 bp) revealed 5 haplotypes distributed among 29 individuals and high haplotype diversity (0.658). Two haplotypes were distributed across the country, whilst the others were restricted to eastern Lithuania. Analysis of microsatellites revealed high heterozygosity (HE=0.709) and no evidence for a recent bottleneck. Using detection of first generation migrants, four individuals appeared to assign better with populations genetically differentiated from those resident in Lithuania. These immigrants were males carrying rare mitochondrial haplotypes and were encountered in the eastern part of the country, this indicates that Lithuania is subject to immigration from differentiated populations. Additionally, we did not detect any signs of recent hybridisation with dogs.

Keywords: Canis lupus; Genetic structure; Lithuania; Microsatellites; Mitochondrial DNA

  • [1] Salvatori V., Linnell J., Report on the conservation status and threats for wolves (Canis lupus) in Europe, Council of Europe T-PVS/Inf, 2005, 16, 1–24 Google Scholar

  • [2] Jedrzejewski W., Jedrzejewska B., Andersone-Lilley Z., Balciauskas L., Mannil P., Ozolins J., et al., Synthesizing wolf ecology and management in Eastern Europe: similarities and contrasts with North America, In: Musiani M., Boitani L., Paquet P.C. (Eds.), The world of wolves: new perspectives on ecology, behaviour and management, University of Calgary Press, Calgary, 2010 Google Scholar

  • [3] Randi E., Genetics and conservation of wolves Canis lupus in Europe, Mamm. Rev., 2011, 41, 99–111 http://dx.doi.org/10.1111/j.1365-2907.2010.00176.xCrossrefGoogle Scholar

  • [4] Carmichael L., Nagy J.A., Larter N.C., Strobeck C., Prey specialization may influence patterns of gene flow in wolves ot the Canadian Northwest, Mol. Ecol., 2001, 10, 2787–2798 CrossrefGoogle Scholar

  • [5] Musiani M., Leonard J.A., Cluff H.D., Gates C.C., Mariani S., Paquet P.C., et al., Differentiation of tundra/taiga and boreal coniferous forest wolves: genetic, coat colour and association with migratory caribou, Mol. Ecol., 2007, 16, 4149–4170 http://dx.doi.org/10.1111/j.1365-294X.2007.03458.xCrossrefGoogle Scholar

  • [6] Frankham R., Ballon J.D., Briscoe D.A., Introduction to conservation genetics, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 2009 Google Scholar

  • [7] Hedrick P., Application of molecular genetics to conservation: new issues and examples, In: Beissinger S.R., McCullough D.R. (Eds.), Population viability analysis, University of Chicago Press, Chicago, 2002 Google Scholar

  • [8] Lucchini V., Galov A., Randi E., Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in Italian Appennines, Mol. Ecol., 2004, 13, 523–536 http://dx.doi.org/10.1046/j.1365-294X.2004.02077.xCrossrefGoogle Scholar

  • [9] Jędrzejewski W., Branicki W., Veit C., Međugorac I., Pilot M., Bunevich A.N., et al., Genetic diversity and relatedness within packs in an intensively hunted population of wolves Canis lupus, Acta Theriol., 2005, 50, 3–22 http://dx.doi.org/10.1007/BF03192614CrossrefGoogle Scholar

  • [10] Sastre N., Vilà C., Salinas M., Bologov V.V., Urios V., Sánchez A., et al., Signatures of demographic bottlenecks in European wolf populations, Conserv. Genet., 2011, 12, 701–712 http://dx.doi.org/10.1007/s10592-010-0177-6CrossrefGoogle Scholar

  • [11] Andersone Ž., Lucchini V., Randi E., Ozoliņš J., Hybridization between wolves and dogs in Latvia as documented using mitochondrial and microsatellite DNA markers, Mamm. Biol., 2002, 67, 79–90 CrossrefGoogle Scholar

  • [12] Hinrikson M., Männil P., Ozoliņš J., Krzywinski A., Saarma U., Bucking the trend in wolf-dog hybridization: first evidence from Europe of hybridization between female dogs and male wolves, PloS One, 2012, 7, e46465, doi: 10.1371/ journal.pone.0046465 http://dx.doi.org/10.1371/journal.pone.0046465CrossrefGoogle Scholar

  • [13] Sambrook J., Fritsch E.F., Maniatis T., Molecular Cloning: a Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989 Google Scholar

  • [14] Parra D., Méndez J., Cañón J., Dunner S., Genetic differentiation in pointing dog breeds inferred from microsatellites and mitochondrial DNA sequence, Anim. Genet., 2008, 39, 1–7 http://dx.doi.org/10.1111/j.1365-2052.2007.01658.xCrossrefGoogle Scholar

  • [15] Hall T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, 41, 95–98 Google Scholar

  • [16] Librado P., Rozas J., DnaSP v5: A software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, 25, 1451–1452 http://dx.doi.org/10.1093/bioinformatics/btp187CrossrefGoogle Scholar

  • [17] Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, 28, 2731–2739 http://dx.doi.org/10.1093/molbev/msr121CrossrefGoogle Scholar

  • [18] Vilà C., Savolainen P., Maldonado J.E., Amorim I.R., Rice J.E., Honeycutt R.L., et al., Multiple and ancient origins of the domestic dog, Science, 1997, 276, 1687–1689 http://dx.doi.org/10.1126/science.276.5319.1687CrossrefGoogle Scholar

  • [19] Björnerfeldt S., Webster M.T., Vilà C., Relaxation of selective constraint on dog mitochondrial DNA following domestication, Genome Res., 2006, 16, 990–994 http://dx.doi.org/10.1101/gr.5117706CrossrefGoogle Scholar

  • [20] Aggarwal R.K., Kivisild T., Ramadevi J., Singh L., Mitochondrial DNA coding region sequences support the phylogenetic distinction of two Indian wolf species, J. Zool. Suppl. Evol. Res., 2007, 45, 163–172 http://dx.doi.org/10.1111/j.1439-0469.2006.00400.xCrossrefGoogle Scholar

  • [21] Pilot M., Branicki W., Jędrzejewski W., Goszczyński J., Jędrzejewska B., Dykyy I., et al., Phylogeographic history of grey wolves in Europe, BMC Evol. Biol., 2010, 10, 104, doi:10.1186/1471-2148-10-104 http://dx.doi.org/10.1186/1471-2148-10-104CrossrefGoogle Scholar

  • [22] Bekaert B., Larmuseau M.H.D., Vanhove M.P.M., Opdekamp A., Decorte R., Automated DNA extraction of single dog hairs without roots for mitochondrial DNA analysis, Forensic Sci. Int. Genet., 2012, 6, 277–281 http://dx.doi.org/10.1016/j.fsigen.2011.04.009CrossrefGoogle Scholar

  • [23] Huelsenbeck J.P., Ronquist F., MRBAYES: Bayesian inference of phylogeny, Bioinformatics, 2001, 17, 817–818 http://dx.doi.org/10.1093/bioinformatics/17.8.754CrossrefGoogle Scholar

  • [24] Posada D., jModelTest: Phylogenetic Model Averaging, Mol. Biol. Evol., 2008, 25, 1253–1256 http://dx.doi.org/10.1093/molbev/msn083CrossrefGoogle Scholar

  • [25] Holmes N.G., Mellersh C.S., Humphreys S.J., Binns M.M., Holliman A., Curtis R., et al., Isolation and characterization of microsatellites from the canine genome, Anim. Genet., 1993, 24, 289–292 http://dx.doi.org/10.1111/j.1365-2052.1993.tb00313.xCrossrefGoogle Scholar

  • [26] Holmes N.G., Strange N.J., Binns M.M., Mellersh C.S., Sampson J., Three polymorphic canine microsatellites, Anim. Genet., 1994, 25, 200 http://dx.doi.org/10.1111/j.1365-2052.1994.tb00122.xCrossrefGoogle Scholar

  • [27] Holmes N.G., Dickens H.F., Parker H.L., Brims M.M., Mellersh C.S., Sampson J., Eighteen canine microsatellites, Anim. Genet., 1995, 26, 132–133 http://dx.doi.org/10.1111/j.1365-2052.1995.tb02659.xCrossrefGoogle Scholar

  • [28] Ostrander E.A., Sprague G.F., Rine J., Identification and characterization of dinucleotide repeat (CA)n markers for genetic mapping in dog, Genomics, 1993, 16, 207–213 http://dx.doi.org/10.1006/geno.1993.1160CrossrefGoogle Scholar

  • [29] Francisco L.V., Langston A.A., Mellersh C.S., Neal C.L., Ostrander E.A., A class of highly polymorphic tetranucleotide repeats for canine genetic mapping, Mamm. Genome, 1996, 7, 359–362 http://dx.doi.org/10.1007/s003359900104CrossrefGoogle Scholar

  • [30] Van Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley P., MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data, Mol. Ecol. Notes, 2004, 4, 535–538 http://dx.doi.org/10.1111/j.1471-8286.2004.00684.xCrossrefGoogle Scholar

  • [31] Excoffier L., Lischer H.E.L., Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, 10, 564–567 http://dx.doi.org/10.1111/j.1755-0998.2010.02847.xCrossrefGoogle Scholar

  • [32] Goudet J., FSTAT (Version 1.2): A computer program to calculate F-statistics, J. Hered., 1995, 86, 485–486 Google Scholar

  • [33] Raymond M., Rousset F., GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism, J. Hered., 1995, 86, 248–249 Google Scholar

  • [34] Piry S., Luikart G., Cornuet J.M., BOTTLENECK: a computer program for detecting recent reductions in effective size using allele frequency data, J. Hered., 1999, 90, 502–503 http://dx.doi.org/10.1093/jhered/90.4.502CrossrefGoogle Scholar

  • [35] Cornuet J.M., Luikart G., Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data, Genetics, 1996, 144, 2001–2014 Google Scholar

  • [36] Jost L., GST and its relatives do not measure differentiation, Mol. Ecol., 2008, 17, 4015–4026 http://dx.doi.org/10.1111/j.1365-294X.2008.03887.xCrossrefGoogle Scholar

  • [37] Gerlach G., Jueterbock A., Kraemer P., Depperman J., Harmand P., Calculations of population differentiation based on GST and D: forget GST but not all of statistics!, Mol. Ecol., 2010, 19, 3845–3852 http://dx.doi.org/10.1111/j.1365-294X.2010.04784.xCrossrefGoogle Scholar

  • [38] Weir B.S., Cockerham C.C., Estimating F-statistics for the analysis of population structure, Evolution, 1984, 38, 1358–1370 http://dx.doi.org/10.2307/2408641CrossrefGoogle Scholar

  • [39] Piry S., Alapetite A., Cornuet J.M., Paetkau D., Baudouin L., Estoup A., GeneClass2: A Software for Genetic Assignment and First-Generation Migrant Detection, J. Hered., 2004, 95, 536–539 http://dx.doi.org/10.1093/jhered/esh074CrossrefGoogle Scholar

  • [40] Paetkau D., Slade R., Burden M., Estoup A., Direct, real-time estimation of migration rate using assignment methods: a simulation-based exploration of accuracy and power, Mol. Ecol., 2004, 13, 55–65 http://dx.doi.org/10.1046/j.1365-294X.2004.02008.xCrossrefGoogle Scholar

  • [41] Rannala B., Mountain J.L., Detecting immigration by using multilocus genotypes, Proc. Natl. Acad. Sci. USA, 1997, 94, 9197–9201 http://dx.doi.org/10.1073/pnas.94.17.9197CrossrefGoogle Scholar

  • [42] Pritchard J.K., Stephens M., Donnelly P.J., Inference of population structure using multilocus genotype data, Genet., 2000, 155, 945–959 Google Scholar

  • [43] Anderson E.C., Thompson E.A., A model-based method for identifying species hybrids using multilocus genetic data, Genetics, 2002, 160, 1217–1229 Google Scholar

  • [44] Nielsen E.E., Bach A.L., Kotlicki P., Hybridlab (version 1.0): a program for generating simulated hybrids from population samples, Mol. Ecol. Notes, 2006, 6, 971–973 http://dx.doi.org/10.1111/j.1471-8286.2006.01433.xGoogle Scholar

  • [45] Godinho R., Llaneza L., Blanco J.C., Lopes S., Álvares F., García E.J., et al., Genetic evidence for multiple events of hybridization between wolves and domestic dogs in the Iberian Peninsula, Mol. Ecol., 2011, 20, 5154–5166 http://dx.doi.org/10.1111/j.1365-294X.2011.05345.xCrossrefGoogle Scholar

  • [46] Pilot M., Jędrzejewski W., Branicki W., Sidorovich V.E., Jędrzejewska B., Stachura K., et al., Ecological factors influence population genetic structure of European grey wolves, Mol. Ecol., 2006, 15, 4533–4553 http://dx.doi.org/10.1111/j.1365-294X.2006.03110.xCrossrefGoogle Scholar

  • [47] Randi E., Lucchini V., Christensen M.F., Mucci N., Funk S.M., Dolf G., et al., Mitochondrial DNA variability in Italian and East-European wolves: detecting the consequences of small population size and hybridization, Conserv. Biol., 2000, 14, 464–473 http://dx.doi.org/10.1046/j.1523-1739.2000.98280.xCrossrefGoogle Scholar

  • [48] Valière N., Fumagalli L., Gielly L., Miquel C., Lequette B., Poulle M.-L., et al., Long-distance wolf recolonization of France and Switzerland inferred from non-invasive genetic sampling over a period of 10 years, Anim. Conserv., 2003, 6, 83–92 http://dx.doi.org/10.1017/S1367943003003111Google Scholar

  • [49] Gomerčić T., Sindičić M., Galov A., Arbanasić H., Kusak J., Kocijan I., et al., High genetic variability of the grey wolf (Canis lupus L.) population from Croatia as revealed by mitochondrial DNA control region sequences, Zool. Stud., 2010, 49, 816–823 Google Scholar

  • [50] Wayne R.K., Ostrander E.A., Lessons learned from the dog genome, Trends Genet., 2007, 23, 557–567 http://dx.doi.org/10.1016/j.tig.2007.08.013CrossrefGoogle Scholar

  • [51] Aspi J., Roininen E., Kiiskilä J., Ruokonen M., Kojola I., Bljudnik L., et al., Genetic structure of the northwestern Russian wolf populations and gene flow between Russia and Finland, Conserv. Genet., 2009, 10, 815–826 http://dx.doi.org/10.1007/s10592-008-9642-xCrossrefGoogle Scholar

  • [52] Balčiauskas L., Wolf numbers and distribution in Lithuania and problems of species conservation, Ann. Zool. Fenn., 2008, 45, 329–334 http://dx.doi.org/10.5735/086.045.0414CrossrefGoogle Scholar

  • [53] Fabri E., Miquel C., Lucchini V., Santini A., Caniglia R., Duchamp C., et al., From Apennines to the Alps: colonization genetics of the naturally expanding Italian wolf (Canis lupus) population, Mol. Ecol., 2007, 16, 1661–1671 http://dx.doi.org/10.1111/j.1365-294X.2007.03262.xCrossrefGoogle Scholar

About the article

Published Online: 2013-03-07

Published in Print: 2013-03-01

Citation Information: Open Life Sciences, Volume 8, Issue 5, Pages 440–447, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-013-0154-9.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Timothy C. Bray, Osama Badri Mohammed, Thomas M. Butynski, Torsten Wronski, Mohamed Abdelkader Sandouka, and Abdulaziz Nasser Alagaili
Mammalian Biology - Zeitschrift für Säugetierkunde, 2014, Volume 79, Number 6, Page 409

Comments (0)

Please log in or register to comment.
Log in