Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year


IMPACT FACTOR 2017: 0.764
5-year IMPACT FACTOR: 0.787

CiteScore 2017: 0.88

SCImago Journal Rank (SJR) 2017: 0.271
Source Normalized Impact per Paper (SNIP) 2017: 0.545

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 8, Issue 7

Issues

Volume 10 (2015)

Antibacterial activity of marine macroalgae against fish pathogenic Vibrio species

Rosa Cavallo / Maria Acquaviva / Loredana Stabili
  • Institute for Marine Coastal Environment (IAMC), C.N.R., 74123, Taranto, Italy
  • Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ester Cecere / Antonella Petrocelli / Marcella Narracci
Published Online: 2013-04-23 | DOI: https://doi.org/10.2478/s11535-013-0181-6

Abstract

In mariculture, diseases of microbial origin can cause significant economic losses worldwide; the evolution of microorganism resistance to antibiotics has resulted in a growing need for new antibacterial compounds that are effective in veterinary medicine and characterized by limited undesirable side effects. Increased attention has recently been turned to seaweeds as a promising source for metabolites with antimicrobial activity. Vibriosis is a common disease, caused by bacteria of the genus Vibrio, that can result in high mortality in aquaculture. The aim of this study was to identify seaweeds with antibacterial activity against some pathogenic Vibrio species, in order to identify a possible alternative to the commonly used antibiotics in aquaculture. Chloroform/methanol lipidic extracts of six seaweed species (Chaetomorpha linum, Cladophora rupestris, Gracilaria dura, Gracilaria gracilis, Gracilariopsis longissima, Ulva prolifera) were tested for their antibacterial activities against six fish pathogenic Vibrio species using the disc diffusion method. Different susceptibilities to lipidic algal extracts were observed. All six of the seaweed extracts tested demonstrated inhibition of Vibrio ordalii. The best was that from Gracilariopsis longissima, showing activity against Vibrio ordalii, Vibrio salmonicida, Vibrio alginolyticus and Vibrio vulnificus. The results confirmed the potential use of seaweed extracts as a source of antibacterial compounds or as a health-promoting feed for aquaculture.

Keywords: Antibacterial compounds; Mar Piccolo of Taranto; Mediterranean Sea; Seaweeds; Vibrio spp.

  • [1] Toranzo A.E., Magariños B., Romalde J.L., A review of the main bacterial fish diseases in mariculture systems, Aquaculture, 2005, 246, 37–61 http://dx.doi.org/10.1016/j.aquaculture.2005.01.002CrossrefGoogle Scholar

  • [2] Ponprateep S., Somboonwiwat K., Tassanakajon A., Recombinant anti-lipopolysaccharide factor isoform 3 and the prevention of vibriosis in the black tiger shrimp, Penaeus monodon, Aquaculture, 2009, 289, 219–224 http://dx.doi.org/10.1016/j.aquaculture.2009.01.026CrossrefGoogle Scholar

  • [3] Radjasa O.K.S., Sabdono A., Prayitno S.B., Hutabarat S., Phylogenetic diversity of the causative agents of vibriosis associated with groupers fish from Karimunjawa Islands, Indonesia, Curr. Res. Bacteriol, 2009, 2, 14–21 http://dx.doi.org/10.3923/crb.2009.14.21CrossrefGoogle Scholar

  • [4] Cavallo R.A., Stabili L., Presence of vibrios in seawater and Mytilus galloprovincialis (Lam.) from the Mar Piccolo of Taranto (Ionian Sea), Water Res., 2002, 36, 3719–3726 http://dx.doi.org/10.1016/S0043-1354(02)00107-0CrossrefGoogle Scholar

  • [5] Normanno G., Parisi A., Addante N., Quaglia N.C., Dambrosio A., Montagna C., et al., Vibrio parahaemolyticus, Vibrio vulnificus and microorganisms of fecal origin in mussels (Mytilus galloprovincialis) sold in the Puglia region (Italy), Int. J. Food Microbiol., 2006, 106, 219–222 http://dx.doi.org/10.1016/j.ijfoodmicro.2005.05.020CrossrefGoogle Scholar

  • [6] Cabello F.C., Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment, Environ. Microbiol., 2006, 8, 1137–1144 http://dx.doi.org/10.1111/j.1462-2920.2006.01054.xCrossrefGoogle Scholar

  • [7] Immanuel G., Vincybai V.C., Sivaram V., Palavesam A., Marian M.P., Effect of butanolic extracts from terrestrial herbs and seaweeds on the survival, growth and pathogen (Vibrio parahaemolyticus) load on shrimp Penaeus indicus juveniles, Aquaculture, 2004, 236, 53–65 http://dx.doi.org/10.1016/j.aquaculture.2003.11.033CrossrefGoogle Scholar

  • [8] Bansemir A., Blume M., Schroder S., Lindequist U., Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria, Aquaculture, 2006, 252, 79–84 http://dx.doi.org/10.1016/j.aquaculture.2005.11.051CrossrefGoogle Scholar

  • [9] Ely R., Supriya T., Naik C.G., Antimicrobial activity of marine organisms collected off the coast of South Est India, J. Exp. Biol. Ecol., 2004, 309, 121–127 http://dx.doi.org/10.1016/j.jembe.2004.03.010CrossrefGoogle Scholar

  • [10] Laport M.S., Santos O.C.S., Muricy G., Marine sponges: potential sources of new antimicrobial drugs, Curr. Pharm. Biotechnol., 2009, 10, 86–105 http://dx.doi.org/10.2174/138920109787048625CrossrefGoogle Scholar

  • [11] Molinski T.F., Dalisay D.S., Lievens S.L., Saludes J.P., Drug development from marine natural products, Nat. Rev. Drug Discov., 2009, 8, 69–85 http://dx.doi.org/10.1038/nrd2487CrossrefGoogle Scholar

  • [12] Smit A.J., Medicinal and pharmaceutical uses of seaweed natural products: A review, J. Appl. Phycol., 2004, 16, 245–262 http://dx.doi.org/10.1023/B:JAPH.0000047783.36600.efCrossrefGoogle Scholar

  • [13] Wijesinghe W.A.J.P., Jeon Y.J., Biological activities and potential industrial applications of fucose rich sulphated polysaccharides and fucoidans isolated from brown seaweeds: A review, Carbohydr. Polym., 2012, 88, 13–20 http://dx.doi.org/10.1016/j.carbpol.2011.12.029CrossrefGoogle Scholar

  • [14] Kolanjinathan K., Ganesh P., Govindarajan M., Antibacterial activity of ethanol extracts of seaweeds against fish bacterial pathogens, Eur. Rev. Med. Pharmacol. Sci., 2009, 13, 173–177 Google Scholar

  • [15] Nelson M.M., Phleger C.E., Nichols P.D., Seasonal lipid composition in macroalgae of the northeastern Pacific Ocean, Bot. Mar., 2002, 45, 58–65 http://dx.doi.org/10.1515/BOT.2002.007CrossrefGoogle Scholar

  • [16] Freile-Pelegrín Y., Morales J.L, Antibacterial activity in marine algae from the coast of Yucatan, Mexico, Bot. Mar., 2004, 47, 140–146 http://dx.doi.org/10.1515/BOT.2004.014CrossrefGoogle Scholar

  • [17] Stengel D.B., Connan S., Popper Z.A., Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application, Biotechnol. Adv., 2011, 29, 483–501 http://dx.doi.org/10.1016/j.biotechadv.2011.05.016CrossrefGoogle Scholar

  • [18] Liao W.R., Lin J.Y., Shieh W.Y., Jeng W.L., Huang R., Antibiotic activity of lectins from marine algae against marine Vibrios, J. Ind. Microbiol. Biotechnol., 2003, 30, 433–439 http://dx.doi.org/10.1007/s10295-003-0068-7CrossrefGoogle Scholar

  • [19] Ganeshamurthy R., Ajith Kumar T.T., Dhayanithi N.B., Effect of secondary metabolites of the seaweed (Halimeda micronesia) at Lakshadweep Islands against aquatic pathogens, Int. J. Pharma Bio Sci., 2012, 3, B-213–220 Google Scholar

  • [20] Steentoft M., Irvine L.M., Farnham W.F., Two terete species of Gracilaria and Gracilariopsis (Gracilariales, Rhodophyta) in Britain, Phycologia, 1995, 34, 113–127 http://dx.doi.org/10.2216/i0031-8884-34-2-113.1CrossrefGoogle Scholar

  • [21] Leliaert F., Boedeker C., Cladophorales, In: Brodie J., Maggs C.A., John D.M. (Eds.), Green Seaweeds of Britain and Ireland, Dataplus Print & Design, Dunmurry, Northern Ireland, 2007 Google Scholar

  • [22] Maggs C.A., Blomster J., Mineur F., Kelly J., Ulvaceae, In: Brodie J., Maggs C.A., John D.M. (Eds.), Green Seaweeds of Britain and Ireland, Dataplus Print & Design, Dunmurry, Northern Ireland, 2007 Google Scholar

  • [23] Kientz B., Thabard M., Cragg S.M., Pope J., Hellio C., A new method for removing microflora from macroalgal surfaces: an important step for natural product discovery, Bot. Mar., 2011, 54, 457–469 http://dx.doi.org/10.1515/BOT.2011.053CrossrefGoogle Scholar

  • [24] El-Masry H.A., Fahmy H.H., Abdelwahed A.S.H., Synthesis and antimicrobial activity of some new benzimidazole derivatives, Molecules, 2000, 5, 1429–1438 http://dx.doi.org/10.3390/51201429CrossrefGoogle Scholar

  • [25] Bauer A.W., Kirby W.M., Sherris J.C., Turcck M., Antibiotic susceptibility testing by a standardized single disk method, Am. J. Clin. Pathol., 1966, 45, 493–496 Google Scholar

  • [26] Kim I.H., Lee D.G., Lee S.H., Ha J.M., Ha B.J., Kim S.K., et al., Antibacterial activity of Ulva lactuca against methicillin-resistant Staphylococcus aureus (MRSA), Biotech. Bioproc. Eng., 2007, 12, 579–582 http://dx.doi.org/10.1007/BF02931358CrossrefGoogle Scholar

  • [27] Stabili L., Acquaviva M.I., Biandolino F., Cavallo R.A., De Pascali S.A., Fanizzi F.P., et al., The lipidic extract of the seaweed Gracilariopsis longissima (Rhodophyta, Gracilariales): a potential resource for biotechnological purposes?, New Biotechnol., 2012, 29, 443–450 http://dx.doi.org/10.1016/j.nbt.2011.11.003CrossrefGoogle Scholar

  • [28] Patra J.K., Patra A.P., Mahapatra N.K., Thatoi H.N., Das S., Sahu R.K., et al., Antimicrobial activity of organic solvent extracts of three marine macroalgae from Chilika Lake, Orissa, India, Malays. J. Microbiol., 2009, 5, 128–131 Google Scholar

  • [29] Menéndez M., Comín F.A., Spring and summer proliferation of floating macroalgae in a Mediterranean coastal lagoon (Tancada Lagoon, Ebro Delta, NE Spain), Estuar. Coast. Shelf Sci., 2000, 51, 215–226 http://dx.doi.org/10.1006/ecss.2000.0637CrossrefGoogle Scholar

  • [30] Plus M., Auby I., Verlaque M., Levavasseur G., Seasonal variation in photosynthetic response curves of macrophytes from a Mediterranean coastal lagoon, Aquat. Bot., 2005, 81, 157–173 http://dx.doi.org/10.1016/j.aquabot.2004.10.004CrossrefGoogle Scholar

  • [31] Salvador N., Gomez Garreta A., Lavelli L., Ribera M.A., Antimicrobial activity of Iberian macroalgae, Sci. Mar., 2007, 71, 101–113 http://dx.doi.org/10.3989/scimar.2007.71n1101CrossrefGoogle Scholar

  • [32] Hellio C., Bremer G., Pons A.M., Le Gal Y., Bourgougnon N., Inhibition of the development of microorganisms (bacteria and fungi) by extracts of marine algae from Brittany, France. Appl. Microbiol. Biotechnol., 2001, 54, 543–549 http://dx.doi.org/10.1007/s002530000413CrossrefGoogle Scholar

  • [33] Yuvaraj N., Kanmani P., Satishkumar R., Paari K.A., Pattukumar V., Arul V., Extraction, purification and partial characterization of Cladophora glomerata against multidrug resistant human pathogen Acinetobacter baumannii and fish pathogens, World J. Fish Mar. Sci., 2011, 3, 51–57 Google Scholar

  • [34] Manilal A., Sujith S., Selvin J., Kiran G.S., Shakir C., Lipton A.P., Antimicrobial potential of marine organisms collected from the southwest coast of India against multiresistant human and shrimp pathogen, Sci. Mar., 2010, 74, 287–296 http://dx.doi.org/10.3989/scimar.2010.74n2287CrossrefGoogle Scholar

  • [35] Chesters C.G., Stott J.A., Production of antibiotic substances by seaweeds. In: Braarud T., Sørensen N.A. (Eds.), Proceedings of the 2nd International Seaweed Symposium (14–16 July 1955, Trondheim, Norway), Pergamon Press, London, 1956, 49–54 Google Scholar

  • [36] Caccamese S., Azzolina R., Furnari G., Cormaci M., Grasso S., Antimicrobial and antiviral activities of extracts from Mediterranean algae, Bot. Mar., 1980, 23, 285–288 Google Scholar

  • [37] de Almeida C.L.F., Falcão H.S., Lima G.R.M., Montenegro C.A., Lira N.S., de Athayde-Filho P.F., et al., Bioactivities from marine algae of the genus Gracilaria, Int. J. Mol. Sci., 2011, 12, 4550–4573 http://dx.doi.org/10.3390/ijms12074550CrossrefGoogle Scholar

  • [38] Padmakumar K., Ayyakkannu K., Seasonal variation of antibacterial and antifungal activities of marine algae from southern coast of India, Bot. Mar., 1997, 40, 507–515 http://dx.doi.org/10.1515/botm.1997.40.1-6.507CrossrefGoogle Scholar

  • [39] Kanjana K., Radtanatip T., Asuvapongpatana S., Withyachumnarnkul B., Wongprasert K., Solvent extracts of the red seaweed Gracilaria fisheri prevent Vibrio harveyi infections in the black tiger shrimp Penaeus monodon, Fish Shellfish Immunol., 2011, 30, 389–396 http://dx.doi.org/10.1016/j.fsi.2010.11.016CrossrefGoogle Scholar

  • [40] Tüney I., Çadirci B.H., Ünal D., Sukatar A., Antimicrobial activities of the extracts of marine algae from the coast of Urla (İzmir, Turkey), Turk. J. Biol., 2006, 30, 171–175 Google Scholar

  • [41] Ghobrial M.G., Omar S., Adnan T., Potential for finding new bioactive agents from selected aquatic plant extracts against enteric bacteria, Egypt. J. Nat. Toxins, 2007, 4, 12–25 Google Scholar

  • [42] Cho M.L., Lee H.S., Kang H.J., Won M.H., You S.G., Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed, Food Chem., 2011, 127, 999–1006 http://dx.doi.org/10.1016/j.foodchem.2011.01.072CrossrefGoogle Scholar

  • [43] Choudhury S., Sree A., Mukherjee S.C., Pattnaik P., Bapuji M., In vitro antibacterial activity of extracts of selected marine algae and mangroves against fish pathogens, Asian Fish. Sci., 2005, 18, 285–294 Google Scholar

  • [44] Dubber D., Harder T., Extracts of Ceramium rubrum, Mastocarpus stellatus and Laminaria digitata inhibit growth of marine and fish pathogenic bacteria at ecologically realistic concentrations, Aquaculture, 2008, 274, 196–200 http://dx.doi.org/10.1016/j.aquaculture.2007.11.029CrossrefGoogle Scholar

  • [45] Genovese G., Faggio C., Gugliandolo C., Torre A., Spanò A., Morabito M., et al., In vitro evaluation of antibacterial activity of Asparagopsis taxiformis from the Straits of Messina against pathogens relevant in aquaculture, Mar. Environ. Res., 2012, 73, 1–6 http://dx.doi.org/10.1016/j.marenvres.2011.10.002CrossrefGoogle Scholar

About the article

Published Online: 2013-04-23

Published in Print: 2013-07-01


Citation Information: Open Life Sciences, Volume 8, Issue 7, Pages 646–653, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-013-0181-6.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Grace N.A. Charway, Padmini Yenumula, and Young-Mog Kim
Journal of Food Hygiene and Safety, 2018, Volume 33, Number 3, Page 151
[2]
Loredana Stabili, Simonetta Fraschetti, Maria Acquaviva, Rosa Cavallo, Sandra De Pascali, Francesco Fanizzi, Carmela Gerardi, Marcella Narracci, and Lucia Rizzo
Marine Drugs, 2016, Volume 14, Number 11, Page 210
[3]
María Pérez, Elena Falqué, and Herminia Domínguez
Marine Drugs, 2016, Volume 14, Number 3, Page 52

Comments (0)

Please log in or register to comment.
Log in