Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year

IMPACT FACTOR 2016 (Open Life Sciences): 0.448

CiteScore 2016: 1.02

SCImago Journal Rank (SJR) 2016: 0.329
Source Normalized Impact per Paper (SNIP) 2016: 0.621

Open Access
See all formats and pricing
More options …
Volume 9, Issue 1


Protein synthesis in crustaceans: a review focused on feeding and nutrition

Chris Carter / Elena Mente
  • School of Agricultural Sciences, Department of Ichthyology and Aquatic Environment, University of Thessaly, GR-38446, N Thessaly, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-18 | DOI: https://doi.org/10.2478/s11535-013-0134-0


This review aimed to place crustacean research on in vivo protein synthesis into a broader context, assess its potential for providing further insights into crustacean nutrition and physiology, and recommend future directions relevant to crustacean aquaculture. In crustaceans the flooding dose measurement of protein synthesis is the only method that has been used, it is relatively complex, time consuming and uses radioactive labels. Protein synthesis provides a subtle approach to assessing imbalances and deficiencies in dietary amino acid and energy. In addition, the calculation of protein synthesis retention efficiency (SRE) is recommended in order to understand and optimize parameters such as feeding regime and diet composition. For prawns, SRE was highest at optimum dietary protein content and quality. Similarly the most efficient feeding regimes in juvenile lobsters were demonstrated by the highest efficiency of retaining synthesized protein. Understanding how various abiotic and biotic factors influence protein synthesis has great potential for improving different aspects of crustacean aquaculture but very few studies have done this; better knowledge of how abiotic and biotic factors affect crustacean protein synthesis will contribute to optimising growth of crustaceans in culture.

Keywords: Fisheries; Aquaculture; Crustaceans; Protein metabolism; Protein synthesis

  • [1] Waterlow J.C., Protein Turnover, CABI Wallingford UK, 2006 Google Scholar

  • [2] Carter C.G., Houlihan D.F., Protein synthesis, In: Wright P.A., Anderson P.M. (Eds.), Nitrogen Excretion, Fish Physiology Vol. 20, Academic Press San Diego, 2001 Google Scholar

  • [3] Millward D.J., The nutritional regulation of muscle growth and protein turnover, Aquaculture, 1989, 79, 1–28 http://dx.doi.org/10.1016/0044-8486(89)90441-9CrossrefGoogle Scholar

  • [4] Fraser K.P.P., Rogers A.D., Protein metabolism in marine animals: The underlying mechanism of growth, Ad. Mar. Biol., 2007, 52, 267–362 http://dx.doi.org/10.1016/S0065-2881(06)52003-6CrossrefGoogle Scholar

  • [5] Houlihan D.F., Carter C.G., McCarthy I.D., Protein turnover in animals, In: Wright P.J., Walsh P.A. (Eds.), Nitrogen and Excretion, CRC Press Boca Raton, 1995 Google Scholar

  • [6] Carter C.G., Houlihan D.F., Brechin J., McCarthy I.D., The relationships between protein intake and protein accretion, synthesis and retention efficiency for individual grass carp, Ctenopharyngodon idella (Valenciennes), Can. J. Zool, 1993, 71, 392–400 http://dx.doi.org/10.1139/z93-055CrossrefGoogle Scholar

  • [7] Houlihan D.F., Hall S.J., Gray C., Noble B.S., Growth rates and protein turnover in Atlantic cod, Gadus morhua., Can. J. Fish. Aquat. Sci., 1988, 45, 951–964 http://dx.doi.org/10.1139/f88-117CrossrefGoogle Scholar

  • [8] Millward D.J., Rivers J., The nutritional role of indispensible amino acids and the metabolic basis for their requirements, Euro. J. Clin. Nutr, 1988, 42, 367–393 Google Scholar

  • [9] Fraser K.P.P., Lyndon A.R., Houlihan D.F., Protein synthesis and growth in juvenile Atlantic halibut, Hippoglossus hippoglossus (L.): application of 15N stable isotope tracer, Aquacult. Res., 1998, 29, 289–298 CrossrefGoogle Scholar

  • [10] McCarthy I.D., Houlihan D.F., Carter C.G., Moutou K., Variation in individual food consumption rates of fish and its implications for the study of fish nutrition and physiology, P. Nutr. Soc., 1993, 52, 411–420 http://dx.doi.org/10.1079/PNS19930083CrossrefGoogle Scholar

  • [11] Hawkins A.J.S., Protein turnover: a functional appraisal, Func. Ecol., 1991, 5, 222–233 http://dx.doi.org/10.2307/2389260CrossrefGoogle Scholar

  • [12] Houlihan D.F., Protein turnover in ectotherms and its relationships to energetics, Adv. Comp. Env. Physiol., 1991, 7, 1–43 http://dx.doi.org/10.1007/978-3-642-75897-3_1CrossrefGoogle Scholar

  • [13] Houlihan D.F., Carter C.G., McCarthy I.D., Protein synthesis in fish., In: Hochachka P., Mommsen P. (Eds.), Biochemistry and Molecular Biology of Fishes, volume 4., Elsevier Science Amsterdam, 1995 Google Scholar

  • [14] McCarthy I.D., Houlihan D.F., The effect of water temperature on protein metabolism in fish: the possible consequences for wild Atlantic salmon (Salmo salar L.) stocks in Europe as a result of global warming., In: Wood C.M., McDonald D.G. (Eds.), Global Warming: Implications for Freshwater and Marine Fish, Cambridge University Press, Cambridge, 1996 Google Scholar

  • [15] Whiteley N.M., Robertson R.F., Meagor J., El Haj A.J., Taylor E.W., Protein synthesis and specific dynamic action in crustaceans: effects of temperature, Comp. Biochem. Physiol. A, 2001, 128, 595–606 Google Scholar

  • [16] El Haj A.J., Houlihan D.F., In vitro and in vivo protein-synthesis rates in a crustacean muscle during the molt cycle, J. Exp. Biol., 1987, 127, 413–426 Google Scholar

  • [17] Mente E., Houlihan D.F., Smith K., Growth, feeding frequency, protein turnover, and amino acid metabolism in European lobster Homarus gammarus L., J. Exp. Zool., 2001, 289, 419–432 http://dx.doi.org/10.1002/jez.1023CrossrefGoogle Scholar

  • [18] Gorell T.A., Gilbert L.I., Stimulation of protein and RNA synthesis in crayfish hepatopancreas by crustecdysone, Gen. Comp. Endo., 1969, 13, 308–310 http://dx.doi.org/10.1016/0016-6480(69)90253-6CrossrefGoogle Scholar

  • [19] Gorell T.A., Gilbert L.I., Protein and RNA synthesis in premolt crayfish, Orconectes virilis, Zeitschrift Fur Vergleichende Physiologie, 1971, 73, 345–356 http://dx.doi.org/10.1007/BF00297952CrossrefGoogle Scholar

  • [20] Horst M.N., Association between chitin synthesis and protein-synthesis in the shrimp Penaeus vannamei, J. Crus. Biol., 1989, 9, 257–265 http://dx.doi.org/10.2307/1548505CrossrefGoogle Scholar

  • [21] Horst M.N., Concurrent protein-synthesis is required for in vivo chitin synthesis in postmolt blue crabs, J. Exp. Zool., 1990, 256, 242–254 http://dx.doi.org/10.1002/jez.1402560303CrossrefGoogle Scholar

  • [22] Paulson C.R., Skinner D.M., Effects of 20-hydroxyecdysone on protein-synthesis in tissues of the land crab Gecarcinus lateralis, J. Exp. Zool., 1991, 257, 70–79 http://dx.doi.org/10.1002/jez.1402570110CrossrefGoogle Scholar

  • [23] Garlick P.J., McNurlan M.A., Preedy V.R., A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of 3H phenylalanine, Biochem J, 1980, 192, 719–723 Google Scholar

  • [24] El Haj A.J., Clarke S.R., Harrison P., Chang E.S., In vivo muscle protein synthesis rates in the American lobster Homarus americanus during the moult cycle and in response to 20-hydroxyecdysone, J. Exp. Biol., 1996, 199, 579–585 Google Scholar

  • [25] Houlihan D.F., Waring C.P., Mathers E., Gray C., Protein-synthesis and oxygen-consumption of the shore crab Carcinus maenas after a meal, Physiol. Zool., 1990, 63, 735–756 Google Scholar

  • [26] Mente E., Carter C.G., Barnes R.S., Karapanagiotidis I.T., Protein synthesis in wildcaught Norway lobster (Nephrops norvegicus L.), J. Exp. Mar. Biol. Ecol., 2011, 409, 208–214 http://dx.doi.org/10.1016/j.jembe.2011.08.025CrossrefGoogle Scholar

  • [27] Hewitt D.R., Response of protein turnover in the brown tiger prawn Penaeus esculentus to variation in dietary protein content, Comp. Biochem. Physiol. A, 1992, 103, 183–187 http://dx.doi.org/10.1016/0300-9629(92)90261-NCrossrefGoogle Scholar

  • [28] Carter C., Houlihan D., Keissling A., Medale F., Jobling M., Physiological effects of feeding, In: Houlihan D., Boujard T., Jobling M. (Eds.), Food Intake in Fish, Blackwell Science Oxford, 2001 Google Scholar

  • [29] Millward D.J., Garlick P.J., James W.P.T., Nnanyelugo D.O., Ryatt J.S., Relationship between protein synthesis and RNA content in skeletal muscle., Nature, 1973, 241, 204–205 http://dx.doi.org/10.1038/241204a0CrossrefGoogle Scholar

  • [30] Robertson R.F., El Haj A.J., Clarke A., Peck L.S., Taylor E.W., The effects of temperature on metabolic rate and protein synthesis following a meal in the isopod Glyptonotus antarcticus Eights (1852), Polar Biol., 2001, 24, 677–686 http://dx.doi.org/10.1007/s003000100268CrossrefGoogle Scholar

  • [31] Mente E., Coutteau P., Houlihan D., Davidson I., Sorgeloos P., Protein turnover, amino acid profile and amino acid flux in juvenile shrimp Litopenaeus vannamei: effects of dietary protein source, J. Exp. Biol., 2002, 205, 3107–3122 Google Scholar

  • [32] R.G., Growth in Crustacea-twenty years on, Hydrobiologia, 2001, 449, 11–122 Google Scholar

  • [33] Moltschaniwskyj N.A., Carter C.G., Protein Synthesis, degradation, and retention: Mechanisms of indeterminate growth in cephalopods, Physiol. Biochem. Zool., 2010, 83, 997–1008 http://dx.doi.org/10.1086/656387CrossrefGoogle Scholar

  • [34] Whiteley N.M., Taylor E.W., El Haj A.J., A comparison of the metabolic cost of protein synthesis in stenothermal and eurythermal isopod crustaceans, Am. J. Physiol., 1996, 271, R1295–R1303 Google Scholar

  • [35] Mejean L., StrickerKrongrad A., Lluch A., Chronobiology, nutrition and metabolism, Pathol. Biol., 1996, 44, 603–609 Google Scholar

  • [36] Robertson R.F., El Haj A.J., Clarke A., Taylor E.W., Effects of temperature on specific dynamic action and protein synthesis rates in the Baltic isopod crustacean, Saduria entomon, J. Exp. Mar. Biol. Ecol., 2001, 262, 113–129 http://dx.doi.org/10.1016/S0022-0981(01)00286-6CrossrefGoogle Scholar

  • [37] McCue M.D., Specific dynamic action: A century of investigation, Comp. Biochem. Physiol. A, 2006, 144, 381–394 http://dx.doi.org/10.1016/j.cbpa.2006.03.011CrossrefGoogle Scholar

  • [38] Katersky R.S., Carter C.G., The effect of temperature on post-prandial protein synthesis in juvenile barramundi, Lates calcarifer, Comp. Biochem. Physiol. A, 2010, 156, 529–536 http://dx.doi.org/10.1016/j.cbpa.2010.04.009CrossrefGoogle Scholar

  • [39] Carter C.G., Mente E., Barnes R.S., Nengas I., Protein synthesis in gilthead sea bream: response to partial fishmeal replacement, Br. J. Nutr., 2012, 108, 2190–2197 http://dx.doi.org/10.1017/S0007114512000426CrossrefGoogle Scholar

  • [40] Whiteley N., Faulkner L.S., Temperature influences whole-animal rates of metabolism but not protein synthesis in a temperate intertidal isopod, Physiol. Biochem. Zool., 2005, 78, 227–238 http://dx.doi.org/10.1086/427054CrossrefGoogle Scholar

  • [41] Mente E., Legeay A., Houlihan D.F., Massabuau J.C., Influence of oxygen partial pressures on protein synthesis in feeding crabs, Am. J. Physiol., 2003, 284, R500–R510 Google Scholar

  • [42] Smith R.W., Houlihan D.F., Nilsson G.E., Brechin J.G., Tissue-specific changes in protein synthesis rates in vivo during anoxia in crucian carp, Am. J. Physiol., 1996, 271, R897–R904 Google Scholar

  • [43] National Research Council, Nutrient Requirements of Fish and Shrimp, The National Academies Press, Washington, D.C., 2011 Google Scholar

  • [44] Intanai I., Taylor E.W., Whiteley N.M., Effects of salinity on rates of protein synthesis and oxygen uptake in the post-larvae and juveniles of the tropical prawn Macrobrachium rosenbergii (de Man), Comp. Biochem. Physiol. A, 2009, 152, 372–378 http://dx.doi.org/10.1016/j.cbpa.2008.11.006CrossrefGoogle Scholar

  • [45] McCarthy I.D., Houlihan D.F., Carter C.G., Individual variation in protein turnover and growth efficiency in rainbow trout, Oncorhynchus mykiss (Walbaum), Proc. Roy. Soc. Lond. B., 1994, 257, 141–147 http://dx.doi.org/10.1098/rspb.1994.0107CrossrefGoogle Scholar

About the article

Published Online: 2013-10-18

Published in Print: 2014-01-01

Citation Information: Open Life Sciences, Volume 9, Issue 1, Pages 1–10, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-013-0134-0.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Antonela ASARO, Roberto Alejandro PAGGI, Rosana Ester DE CASTRO, and Alejandra Antonia LÓPEZ MAÑANES
TURKISH JOURNAL OF ZOOLOGY, 2017, Volume 41, Page 443
C. J. Simon, Q. P. Fitzgibbon, A. Battison, C. G. Carter, and S. C. Battaglene
Physiological and Biochemical Zoology, 2015, Volume 88, Number 3, Page 266

Comments (0)

Please log in or register to comment.
Log in