Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 9, Issue 11


Volume 10 (2015)

In vitro introduction of healthy and virus-infected genotypes of native Croatian grapevine cultivars

Zvjezdana Marković
  • Faculty of Agriculture, Department of viticulture and oenology, University of Zagreb, 10000, Zagreb, Croatia
  • INRA UMR AGAP, Equipe DAVEM, 34060, Montpellier, France
  • IRD, UMR DIADE, 34394, Montpellier, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Darko Preiner / Anita Bošnjak / Toni Safner / Domagoj Stupić / Željko Andabaka / Edi Maletić / Philippe Chatelet / Florent Engelmann / Jasminka Kontić
Published Online: 2014-08-15 | DOI: https://doi.org/10.2478/s11535-014-0337-7


We evaluated the response of eight economically important Croatian grapevine cultivars and studied the impact of their sanitary status on in vitro introduction, by comparing the response of healthy and virus-infected genotypes of one cultivar. Nodal explant survival on three media, M1 (half-strength MS), M2 (full-strength MS) or M3 (full-strength MS with 4.4 µM L−1 benzylaminopurine) was measured after 2 weeks and regrowth after 8 weeks. After 8 weeks, average shoot length and node number were significantly higher on M2 compared to M1 and M3. M3 induced significantly shorter average internode length, compared to M1 and M2. Survival of one healthy and of five cultivar Plavac mali genotypes infected with GFLV, GLRaV-1, GLRaV-3, GLRaV-3+GVA and GLRaV-1+GLRaV-3 was 97.5 and 82.8–87.5%, respectively. Regrowth of the healthy genotype reached 95.5%, but dropped to 5.5–31.4% in infected ones. The healthy genotype showed significantly higher shoot length (6.3 cm) and node number (7.3) compared to infected genotypes, with shoot length between 1.2–2.6 cm and node number between 1.2–3.0. By contrast, internode length was not significantly different between the healthy and the infected genotypes. The present work represents the first successful in vitro introduction for three of the eight native Croatian cultivars studied.

Keywords: Grapevine; Croatian autochthonous cultivars; In vitro inoculation; Growth parameters; Infected genotypes

  • [1] Maletić, E., Karoglan Kontić J., Pejić, I., 2008: Grapevine: Ampelography, Ecology, Breeding. Školska Knjiga, Zagreb. Google Scholar

  • [2] Jelaska, M., 1960: Ampelography of Dalmatian cultivars. Library of Institut for Adriatic Crops and Karst Reclamation, Split, Croatia. Google Scholar

  • [3] Bulić, S., 1949: Ampelography of Dalmatia. Poljoprivredni Nakladni Zavod, Zagreb. Google Scholar

  • [4] Šimon, S., Malenica, N., Žulj, M., Gasi, F., Zdunić, G., Preiner, D., Pejić, I., 2010: REMAP as a tool for preliminary grapevine accession screening. Acta Hortic. 859, 155–159. Google Scholar

  • [5] Piljac, L., Maletić, E., Kontic, J.K., Dangl, G.S., Pejić, I., Mirosević, N., Meredith, C.P., 2002: The parentage of Pošip bijeli, a major white wine cultivar of Croatia. Vitis 41, 83–87. Google Scholar

  • [6] Preiner, D., Karoglan Kontić, J., Šimon, S., Marković, Z., Stupić, D., Maletić, E., 2012: Intravarietal agronomic variability in croatian native Vitis vinifera l. cultivar Grk with female flower and seedless berries. Am. J. Enol. Vitic. 63, 291–295. http://dx.doi.org/10.5344/ajev.2012.11121CrossrefGoogle Scholar

  • [7] Zdunić, G., Preece, J.E., Dangl, D.S., Koehmstedt, A., Mucalo, A., Maletić, E., Pejić, I., 2013: Genetic characterization of grapevine cultivars collected throughout the Dalmatian region. Am. J. Enol. Vitic. doi: 10.5344/ajev.2012.12085. CrossrefGoogle Scholar

  • [8] Maletić, E., Pejić, I., Kontić, J.K., Piljac, J., Dangl, G.S., Vokurka, A., Lacombe, T., Mirosević, N., Meredith, C.P., 2004: Zinfandel, Dobricic, and Plavac mali: the genetic relationship among three cultivars of the Dalmatian Coast of Croatia. Am. J. Enol. Vitic. 55, 174–180. Google Scholar

  • [9] Poljuha, D., Sladonja, B., Peršurić, Đ., 2004: Survey of five indigenous istrian cultivars for the presence of six grape viruses. Am. J. Enol. Vitic. 55, 286–287. Google Scholar

  • [10] Karoglan Kontić, J., Preiner, D., Šimon, S., Zdunić, G., Poljuha, D., Maletić, E., 2009: Sanitary Status of Croatian Native Grapevine Varieties. Agric. Conspec. Sci. 74, 99–103. Google Scholar

  • [11] Zdunić, G., Maletić, E., Vokurka, A., Karoglan Kontić, J., Pezo, I., Pejić, I., 2007: Phenotypical, sanitary and ampelometric variability within the population of cv. Plavac Mali (Vitis vinifera L.). Agric. Conspec. Sci. 72, 117–128. Google Scholar

  • [12] Silva, R.C., Luis, G.Z., Pereira, J.E.S., 2012: Short term storage in vitro and large scale propagation of grapevine genotypes. Pesqui. Agropecu. Bras. 47, 344–350. CrossrefGoogle Scholar

  • [13] Skiada, F.G., Grigoriadou, K., Maliogka, V.K., Katis, N.I., Eleftheriou, E.P., 2009: Elimination of grapevine leafroll-associated virus 1 and grapevine rupestris stem pitting-associated virus from grapevine cv. Agiorgitiko and a micropropagation protocol for mass production of virus-free plantlets. J. Plant Pathol. 91, 177–184. Google Scholar

  • [14] Panattoni, A., Luvisi, A., Triolo, E., 2013: Review. Elimination of viruses in plants: twenty years of progress. Span J Agric Res 11(1), 173–188. http://dx.doi.org/10.5424/sjar/2013111-3201CrossrefGoogle Scholar

  • [15] Roubelakis-Angelakis, K.A., 2009: Grapevine Molecular Physiology and Biotechnology. Springer, New York. http://dx.doi.org/10.1007/978-90-481-2305-6CrossrefGoogle Scholar

  • [16] Banilas, G., Korkas, E., 2007: Rapid micropropagation of grapevine (cv. Agiorgitiko) through lateral bud development. e-J. Sci. Tech. 2, 31–38. Google Scholar

  • [17] Mederos-Molina, S., 2007: Culture medium requirements for micropropagation of Vitis vinifera L. cv. Listan Blanco. Acta Hort. 754, 265–271. Google Scholar

  • [18] Reisch, B.I., 1986: Influence of genotype and cytokinins on in vitro shoot proliferation of grapes. J. Am. Soc. Hortic. Sci. 111, 138–141. Google Scholar

  • [19] Botti, C., Garay, L., Reginato, G., 1993: The influence of culture dates, genotype and size and type of shoot apices on in vitro shoot proliferation of Vitis vinifera cvs. Thompson Seedless, Ribier and Black Seedless. Vitis 32, 125–126. Google Scholar

  • [20] Hartl, D., Maleš, P., Jelaska, S., 1989: Vegetative multiplication of five Dalmatian grapevine cultivars in vitro. In: Abstracts of the Contributions presented at the 5th International Symposium on Grape Breeding. Bundesforschungsanstalt fur Rebenzuchtung Geilweilerhof, D-6741-Siebeldingen. Google Scholar

  • [21] Hartl, D., Maleš, P., 2000: Factors affecting of grapevine cultivars, Vugava and Plavac mali micropropagation from in vitro cultured minicuttings. Biologia (Bratislava) 55, 121–129. Google Scholar

  • [22] Hartl, D., Hančević, K., Bućan, L., 2005: Rejuvenation of cv. Vugava grapevine (Vitis vinifera L.) in vitro. Biologia (Bratislava) 60, 437–442. Google Scholar

  • [23] Marković, Z., Chatelet, P., Sylvestre, I., Karoglan Kontić, J., Engelmann, F., 2012: Duration of culture of grapevine (Vitis vinifera) microcuttings on medium with zeatin riboside affects shoot tip recovery after cryopreservation, in: GRAPIN, A., KELLER, E.R.J., LYNCH, P.T., PANIS, B., REVILLA BAHILLO, A., ENGELMANN F., (Eds.), Cryopreservation of Crop Species in Europe Proceedings of the final meeting, Agrocampus Ouest INPH, Angers, France, 8–11 Feb. 2011, COST Office, Brussels, pp. 145–147. Google Scholar

  • [24] Mackenzie, D.J.: 1997: A standard protocol for the detection of viruses and viroids using a reverse transcription-polymerase chain reaction technique. Document CPHBTRTPCR1.00. Canadian Food Inspection Agency. Google Scholar

  • [25] Murashige, T., Skoog, F., 1962: A revised medium for rapid growth and bioassays with tabacco tissue cultures. Physiol. Plant. 15, 473–497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.xCrossrefGoogle Scholar

  • [26] Torregrosa, L., Bouquet, A., Goussard, P.G., 2001: In vitro culture and propagation of grapevine, in: Molecular Biology and Biotechnology of the Grapevine Roubelakis-Angelakis K.A. (Ed.), Springer, New York, pp 281–326. http://dx.doi.org/10.1007/978-94-017-2308-4_12Google Scholar

  • [27] S.A.S., 2004: System for Windows Version 8.02. SAS Institute, Cary, NC, USA. Google Scholar

  • [28] Ryan, T.A., 1960: Significance tests for multiple comparison of proportions, variances, and other statistics. Psychol. Bull. 57, 318–328. http://dx.doi.org/10.1037/h0044320CrossrefGoogle Scholar

  • [29] George, E.F., 1993: Plant Production by Tissue Culture. Exegetics Ltd., U.K. Google Scholar

  • [30] Goussard, P.G., 1981: Effects of cytokinins on elongation, proliferation and total mass of shoots derived from shoot apices of grapevine cultured in vitro. Vitis 20, 228–234. Google Scholar

  • [31] Goussard, P.G., 1982: Morphological responses of shoot apices of grapevine cultured in vitro. Effects of cytokinins in routine subculturing. Vitis 21, 295–298. Google Scholar

  • [32] Mayerson, M.E., Benton C.M., Gray, D.J., 1994: A comparison of shoot micropropagation among bunch and muscadine grape species and cultivars. Proc. Florida State Soc. 107, 311–312. Google Scholar

  • [33] Torregrosa, L., Bouquet, A., 1996: Adventitious bud formation and shoot development from in vitro leaves of Vitis × Muscadinia hybrids. Plant Cell Tiss. Org. Cult. 45, 245–252. http://dx.doi.org/10.1007/BF00043637CrossrefGoogle Scholar

  • [34] Grönroos, L., Von Arnold, S., Ericsson, T., 1989: Somatic embryos from callus of Salix viminalis L. Ann. Sci. Forest. 46, 108–109. http://dx.doi.org/10.1051/forest:19890521CrossrefGoogle Scholar

  • [35] Roubelakis-Angelakis, K.A., Zivanovitc, S.B., 1991: A new culture medium for in vitro rhizogenesis of grapevine (Vitis spp.) genotypes. HortSci. 26, 1551–1553. Google Scholar

  • [36] Alizadeh, M., Singh, S.K., Patel, V.B., 2010: Comparative performance of in vitro multiplication in four grape (Vitis spp.) rootstock genotypes. Int. J. Plant Produc. 4, 41–50. Google Scholar

  • [37] Koruza, B., Jelaska, S., 1993: Influence of meristem culture and virus elimination on phenotypical modifications of grapevine (Vitis vinifera L. cv. Refošk). Vitis 32, 59–60. Google Scholar

  • [38] Péros, J.P., Torregrosa, L., Berger, G., 1998: Variability among Vitis vinifera cultivars in micropropagation, organogenesis and antibiotic sensitivity. J. Exp. Bot. 49, 171–179. http://dx.doi.org/10.1093/jxb/49.319.171CrossrefGoogle Scholar

  • [39] Gambino, G., Bondaz, J., Gribaudo, I., 2006: Detection and elimination of viruses in callus, somatic embryos and regenerated plantlets of grapevine. Eur. J. Plant Pathol. 114, 397–404. http://dx.doi.org/10.1007/s10658-006-0004-6CrossrefGoogle Scholar

  • [40] Youssef, S.A., Al-Dhaher, M.M.A., Shalaby, A.A., 2009: Elimination of Grapevine fanleaf virus (GFLV) and grapevine leaf roll-associated virus-1 (GLRaV-1) from infected grapevine plants using meristem tip culture. Int. J. Virol. 5, 89–99. CrossrefGoogle Scholar

  • [41] Barba, M., Cupidi, A., Casorri, L., 1993: Influence of virus and virus-like diseases of grapevine in shoot cultures. Extended Abstracts of the 11th Meeting of the International Council for the Study of Viruses and Virus Diseases of the Grapevine, Montreux, Switzerland. September 6–9, 1993. Federal Agricultural Research Station of Changins, CH-1260 Nyon, Switzerland, p 2. Google Scholar

  • [42] Monis, J., Bestwick, R.K., 1996: Detection and localization of grapevine associated clostero viruses in greenhouse and tissue culture grown plants. Am. J. Enol. Vitic. 47, 199–205. Google Scholar

  • [43] Smerea, S., Andronic, L., Grigorov, T., Bujoreanu, V., 2010: In vitro regenerative genotypic specifity of meristems from virus infected grapevine cultivars. Rom. Biotech. Lett. 15, 19–25. Google Scholar

  • [44] Buciumeanu, E.C., Vişoiu, E., Guţă, I.C., Popescu, C.F., 2010: Continuity of grapevine virology at NRDIBH Ştefăneşti-Argeş in the service of a viable viticulture in Romania. Rom. Biotech. Lett. 15, 11–18. Google Scholar

  • [45] Walter, B., 1988: Examples of physiological reaction of the vine in the presence of virus [Quelques exemples de la réaction physiologique de la vigne en présence de virus]. Bull. O.I.V. 687–688, 383–390. Google Scholar

  • [46] Abracheva, P., Rozenova, L., Todorova, M., 1994: The influence of grapevine fanleaf virus and stem pitting on in vitro grapevine cultures. Vitis 33, 181–182 Google Scholar

  • [47] Walter, B., Martelli, G.P., 1997: Clonal and sanitary selection of the grapevine, in: Walter, B. (Ed.), Sanitary Selection of the Grapevine. Protocols for Detection of Viruses and Virus-like Diseases, Les Colloques No. 86 INRA Editions, Paris, 43–95. Google Scholar

About the article

Published Online: 2014-08-15

Published in Print: 2014-11-01

Citation Information: Open Life Sciences, Volume 9, Issue 11, Pages 1087–1098, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-014-0337-7.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Zhen-Hua Cui, Wen-Lu Bi, Xin-Yi Hao, Yan Xu, Peng-Min Li, M. Andrew Walker, and Qiao-Chun Wang
Frontiers in Physiology, 2016, Volume 7

Comments (0)

Please log in or register to comment.
Log in