Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 9, Issue 12

Issues

Volume 10 (2015)

Methylation-specific PCR: four steps in primer design

Radoslav Davidović / Ana Božović / Vesna Mandušić / Milena Krajnović
Published Online: 2014-08-17 | DOI: https://doi.org/10.2478/s11535-014-0324-z

Abstract

Methylation-specific PCR (MSP) is still the method of choice for a single gene methylation study. The proper design of the primer pairs is a prerequisite for obtaining reliable PCR results. Despite numerous protocols describing the rules for MSP primer design, none of them provide a comprehensive approach to the problem. Our aim was to depict a workflow for the primer design that is concise and easy to follow. In order to achieve this goal, adequate tools for promoter sequence retrieval, MSP primer design and subsequent in silico analysis are presented and discussed. Furthermore, a few instructive examples regarding a good versus a poor primer design are provided. Finally, primer design is demonstrated according to the proposed workflow. This article aims to provide researchers, interested in a single gene methylation studies, with useful information regarding successful primer design.

Keywords: Methylation-specific PCR; Primer Design; Database; Software for MSP Primer Design; Transcriptional Start Site

  • [1] Kiefer J. C., Epigenetics in development, Dev Dyn, 2007, 236, 1144–1156 http://dx.doi.org/10.1002/dvdy.21094CrossrefGoogle Scholar

  • [2] Delcuve G. P., Rastegar M., Davie J. R., Epigenetic control, J Cell Physiol, 2009, 219, 243–250 http://dx.doi.org/10.1002/jcp.21678CrossrefGoogle Scholar

  • [3] Wan J., Oliver V. F., Zhu H., Zack D. J., Qian J., Merbs S. L., Integrative analysis of tissue-specific methylation and alternative splicing identifies conserved transcription factor binding motifs, Nucleic acids research, 2013, 10.1093/nar/gkt652 Google Scholar

  • [4] Deaton A. M., Bird A., CpG islands and the regulation of transcription, Genes Dev, 2011, 25, 1010–1022 http://dx.doi.org/10.1101/gad.2037511CrossrefGoogle Scholar

  • [5] Santos K. F., Mazzola, T. F., Carvalho, H. F., The prima donna of epigenetics: the regulation of gene expression by DNA methylation, Brazilian Journal of Medical and Biological Research, 2005, 38, 1531–1541 Google Scholar

  • [6] Portela A., Esteller M., Epigenetic modifications and human disease, Nature biotechnology, 2010, 28, 1057–1068 http://dx.doi.org/10.1038/nbt.1685CrossrefGoogle Scholar

  • [7] Esteller M., CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future, Oncogene, 2002, 21, 5427–5440 http://dx.doi.org/10.1038/sj.onc.1205600CrossrefGoogle Scholar

  • [8] Egger G. L., G.; Aparicio, A.; Jones, P.A., Epigenetics in human disease and prospects for epigenetic therapy, Nature, 2004, 429, 457–463 http://dx.doi.org/10.1038/nature02625CrossrefGoogle Scholar

  • [9] Das P. M., Singal R., DNA methylation and cancer, Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 2004, 22, 4632–4642 http://dx.doi.org/10.1200/JCO.2004.07.151CrossrefGoogle Scholar

  • [10] Kanai Y., Hirohashi S., Alterations of DNA methylation associated with abnormalities of DNA methyltransferases in human cancers during transition from a precancerous to a malignant state, Carcinogenesis, 2007, 28, 2434–2442 http://dx.doi.org/10.1093/carcin/bgm206CrossrefGoogle Scholar

  • [11] Kondo Y., Issa J. P., DNA methylation profiling in cancer, Expert Rev Mol Med, 2010, 12, 23 http://dx.doi.org/10.1017/S1462399410001559CrossrefGoogle Scholar

  • [12] Mansego M. L., Milagro F. I., Campion J., Martinez J. A., Techniques of DNA methylation analysis with nutritional applications, Journal of nutrigenetics and nutrigenomics, 2013, 6, 83–96 http://dx.doi.org/10.1159/000350749CrossrefGoogle Scholar

  • [13] Herman J. G., Graff J. R., Myohanen S., Nelkin B. D., Baylin S. B., Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands, Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9821–9826 Google Scholar

  • [14] Zhang Z., Sun D., Hutajulu S. H., Nawaz I., Nguyen Van D., Huang G., et al., Development of a non-invasive method, multiplex methylation specific PCR (MMSP), for early diagnosis of nasopharyngeal carcinoma, PloS one, 2012, 7, 45908 http://dx.doi.org/10.1371/journal.pone.0045908CrossrefGoogle Scholar

  • [15] Delpu Y., Cordelier P., Cho W. C., Torrisani J., DNA methylation and cancer diagnosis, Int J Mol Sci, 2013, 14, 15029–15058 http://dx.doi.org/10.3390/ijms140715029CrossrefGoogle Scholar

  • [16] Yamashita R., Sugano S., Suzuki Y., Nakai K., DBTSS: DataBase of Transcriptional Start Sites progress report in 2012, Nucleic acids research, 2012, 40, 150–154 http://dx.doi.org/10.1093/nar/gkr1005CrossrefGoogle Scholar

  • [17] Tsuchihara K., Suzuki Y., Wakaguri H., Irie T., Tanimoto K., Hashimoto S., et al., Massive transcriptional start site analysis of human genes in hypoxia cells, Nucleic acids research, 2009, 37, 2249–2263 http://dx.doi.org/10.1093/nar/gkp066CrossrefGoogle Scholar

  • [18] Maruyama K., Sugano S., Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides, Gene, 1994, 138, 171–174 http://dx.doi.org/10.1016/0378-1119(94)90802-8CrossrefGoogle Scholar

  • [19] Dreos R., Ambrosini G., Cavin Perier R., Bucher P., EPD and EPDnew, high-quality promoter resources in the next-generation sequencing era, Nucleic acids research, 2012, 41, 157–164 Google Scholar

  • [20] Brait M., Sidransky D., Cancer epigenetics: above and beyond, Toxicology mechanisms and methods, 2011, 21, 275–288 http://dx.doi.org/10.3109/15376516.2011.562671CrossrefGoogle Scholar

  • [21] Zhu X., Leav I., Leung Y. K., Wu M., Liu Q., Gao Y., et al., Dynamic regulation of estrogen receptor-beta expression by DNA methylation during prostate cancer development and metastasis, The American journal of pathology, 2004, 164, 2003–2012 http://dx.doi.org/10.1016/S0002-9440(10)63760-1CrossrefGoogle Scholar

  • [22] Bozovic A., Markicevic M., Dimitrijevic B., Jovanovic Cupic S., Krajnovic M., Lukic S., et al., Potential clinical significance of ERbeta ON promoter methylation in sporadic breast cancer, Med Oncol, 2013, 30, 642 http://dx.doi.org/10.1007/s12032-013-0642-4CrossrefGoogle Scholar

  • [23] Zysman M. C., WB., Bapat B., Considerations When Analyzing the Methylation Status of PTEN Tumor Suppressor Gene, American Journal of Pathology, 2002, 60, 795–800 http://dx.doi.org/10.1016/S0002-9440(10)64902-4CrossrefGoogle Scholar

  • [24] Hesson L. B., Packham D., Pontzer E., Funchain P., Eng C., Ward R. L., A reinvestigation of somatic hypermethylation at the PTEN CpG island in cancer cell lines, Biol Proced Online, 2012, 14, 5 http://dx.doi.org/10.1186/1480-9222-14-5CrossrefGoogle Scholar

  • [25] Cho Y. G., Chang X., Park I. S., Yamashita K., Shao C., Ha P. K., et al., Promoter methylation of leukemia inhibitory factor receptor gene in colorectal carcinoma, International journal of oncology, 2011, 39, 337–344 Google Scholar

  • [26] Fasan A., Alpermann T., Haferlach C., Grossmann V., Roller A., Kohlmann A., et al., Frequency and prognostic impact of CEBPA proximal, distal and core promoter methylation in normal karyotype AML: a study on 623 cases, PloS one, 2013, 8, e54365 http://dx.doi.org/10.1371/journal.pone.0054365Google Scholar

  • [27] Tada Y., Brena R. M., Hackanson B., Morrison C., Otterson G. A., Plass C., Epigenetic modulation of tumor suppressor CCAAT/enhancer binding protein alpha activity in lung cancer, Journal of the National Cancer Institute, 2006, 98, 396–406 http://dx.doi.org/10.1093/jnci/djj093CrossrefGoogle Scholar

  • [28] Lin T. C., Hou H. A., Chou W. C., Ou D. L., Yu S. L., Tien H. F., et al., CEBPA methylation as a prognostic biomarker in patients with de novo acute myeloid leukemia, Leukemia, 2011, 25, 32–40 http://dx.doi.org/10.1038/leu.2010.222CrossrefGoogle Scholar

  • [29] Dong S., Kojima T., Shiraiwa M., Mechin M. C., Chavanas S., Serre G., et al., Regulation of the expression of peptidylarginine deiminase type II gene (PADI2) in human keratinocytes involves Sp1 and Sp3 transcription factors, The Journal of investigative dermatology, 2005, 124, 1026–1033 http://dx.doi.org/10.1111/j.0022-202X.2005.23690.xCrossrefGoogle Scholar

  • [30] Hernandez H. G., Tse M. Y., Pang S. C., Arboleda H., Forero D. A., Optimizing methodologies for PCR-based DNA methylation analysis, Biotechniques, 2013, 55, 181–197 Google Scholar

  • [31] Dieffenbach C. W., Lowe T. M., Dveksler G. S., General concepts for PCR primer design, PCR Methods Appl, 1993, 3, 30–37 http://dx.doi.org/10.1101/gr.3.3.S30CrossrefGoogle Scholar

  • [32] Chuang L. Y., Cheng Y. H., Yang C. H., Specific primer design for the polymerase chain reaction, Biotechnol Lett, 2013, 10.1007/s10529-013-1249-8 Google Scholar

  • [33] Li L. C., Dahiya, R., MethPrimer designing primers for methylation PCRs, Bioinformatics, 2002, 18, 1427–1431 http://dx.doi.org/10.1093/bioinformatics/18.11.1427CrossrefGoogle Scholar

  • [34] Borer P. N., Dengler B., Tinoco I., Jr., Uhlenbeck O. C., Stability of ribonucleic acid double-stranded helices, J Mol Biol, 1974, 86, 843–853 http://dx.doi.org/10.1016/0022-2836(74)90357-XCrossrefGoogle Scholar

  • [35] SantaLucia J., Jr., A unified view of polymer, dumbbell, and oligonucleotide DNA nearestneighbor thermodynamics, Proc Natl Acad Sci U S A, 1998, 95, 1460–1465 http://dx.doi.org/10.1073/pnas.95.4.1460CrossrefGoogle Scholar

  • [36] Panjkovich A., Melo F., Comparison of different melting temperature calculation methods for short DNA sequences, Bioinformatics, 2005, 21, 711–722 http://dx.doi.org/10.1093/bioinformatics/bti066CrossrefGoogle Scholar

  • [37] Marmur J., Doty P., Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature, J Mol Biol, 1962, 5, 109–118 http://dx.doi.org/10.1016/S0022-2836(62)80066-7CrossrefGoogle Scholar

  • [38] Wallace R. B., Shaffer J., Murphy R. F., Bonner J., Hirose T., Itakura K., Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch, Nucleic acids research, 1979, 6, 3543–3557 http://dx.doi.org/10.1093/nar/6.11.3543CrossrefGoogle Scholar

  • [39] Brandes J. C., Carraway H., Herman J. G., Optimal primer design using the novel primer design program: MSPprimer provides accurate methylation analysis of the ATM promoter, Oncogene, 2007, 26, 6229–6237 http://dx.doi.org/10.1038/sj.onc.1210433CrossrefGoogle Scholar

  • [40] Tusnady G. E., Simon I., Varadi A., Aranyi T., BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes, Nucleic acids research, 2005, 33, 9 http://dx.doi.org/10.1093/nar/gni012CrossrefGoogle Scholar

  • [41] Aranyi T., Varadi A., Simon I., Tusnady G. E., The BiSearch web server, BMC Bioinformatics, 2006, 7, 431 http://dx.doi.org/10.1186/1471-2105-7-431CrossrefGoogle Scholar

  • [42] Kristensen L. S., Raynor M. P., Candiloro I., Dobrovic A., Methylation profiling of normal individuals reveals mosaic promoter methylation of cancer-associated genes, Oncotarget, 2012, 3, 450–461 CrossrefGoogle Scholar

  • [43] Rand K., Qu W., Ho T., Clark S. J., Molloy P., Conversion-specific detection of DNA methylation using real-time polymerase chain reaction (ConLight-MSP) to avoid false positives, Methods, 2002, 27, 114–120 http://dx.doi.org/10.1016/S1046-2023(02)00062-2CrossrefGoogle Scholar

  • [44] Singh V. K., Govindarajan, R., Naik, S., Kumar, A., The Effect of Hairpin Structure on PCR Amplification Efficiency, Molecular Biology Today, 2000, 1, 67–69 Google Scholar

  • [45] Rychlik W., Selection of primers for polymerase chain reaction, Mol Biotechnol, 1995, 3, 129–134 http://dx.doi.org/10.1007/BF02789108CrossrefGoogle Scholar

  • [46] Innis M. A., Gelfand, D. H., Optimization of PCRs, in PCR Protocols (Innis, M A, Gelfand, D H, Sninsky, J J, and White, T J, eds), Academic, New York, 3–12, 1990 http://dx.doi.org/10.1016/B978-0-12-372180-8.50005-6CrossrefGoogle Scholar

  • [47] Simsek M., Adnan H., Effect of single mismatches at 3′-end of primers on polymerase chain reaction, Journal for scientific research Medical sciences / Sultan Qaboos University, 2000, 2, 11–14 Google Scholar

  • [48] Kwok S., Kellogg D. E., McKinney N., Spasic D., Goda L., Levenson C., et al., Effects of primertemplate mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies, Nucleic acids research, 1990, 18, 999–1005 http://dx.doi.org/10.1093/nar/18.4.999Google Scholar

  • [49] Huang M. M., Arnheim N., Goodman M. F., Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR, Nucleic acids research, 1992, 20, 4567–4573 http://dx.doi.org/10.1093/nar/20.17.4567CrossrefGoogle Scholar

  • [50] Miura F., Uematsu C., Sakaki Y., Ito T., A novel strategy to design highly specific PCR primers based on the stability and uniqueness of 3′-end subsequences, Bioinformatics, 2005, 21, 4363–4370 http://dx.doi.org/10.1093/bioinformatics/bti716CrossrefGoogle Scholar

About the article

Published Online: 2014-08-17

Published in Print: 2014-12-01


Citation Information: Open Life Sciences, Volume 9, Issue 12, Pages 1127–1139, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-014-0324-z.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in