Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year

IMPACT FACTOR 2017: 0.764
5-year IMPACT FACTOR: 0.787

CiteScore 2017: 0.88

SCImago Journal Rank (SJR) 2017: 0.271
Source Normalized Impact per Paper (SNIP) 2017: 0.545

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 9, Issue 2


Volume 10 (2015)

Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum

Ali Razaghi / Anna Godhe / Eva Albers
  • Chemical and Biological Engineering — Industrial Biotechnology, Chalmers University of Technology, 412 96, Gothenburg, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-11-09 | DOI: https://doi.org/10.2478/s11535-013-0248-z


The microalga Porphyridium cruentum (Rhodophyta) has several industrial and pharmaceutical uses, especially for its polysaccharide production. This study aimed to investigate the influence of nitrogen levels as reflected by altered N:P ratios on the production and content of biomass and carbohydrate. N:P molar ratios were altered in batch cultures to range from 1.6 to 50 using the Redfield ratio of 1:16 as reference. Algal growth (estimated as final cell number, biomass concentration and maximum specific growth rate) was negatively affected at low N:P ratios. The optimal N:P ratio for growth was identified at 35–50, with specific growth rates of 0.19 day−1 and maximum cell concentrations of 59·108 cells L−1 and 1.2 g dry weight of biomass L−1. In addition, variation in cell size was seen. Cells with larger diameters were at higher N:P ratios and smaller cells at lower ratios. The cellular carbohydrate content increased under reduced nitrogen availability. However, because accumulation was moderate at the lowest N:P ratio, 0.4 g per g dry weight biomass compared to 0.24 at the Redfield ratio of 16:1, conditions for increased total carbohydrate formation were identified at the N:P ratios optimal for growth. Additionally, carbohydrates were largely accumulated in late exponential to stationary phase.

Keywords: Rhodophyta; Red algae; Redfield ratio; Nitrogen-to-phosphorous ratio

  • [1] Ahern T.J., Katoh S., Sada E., Arachidonic acid production by the red alga Porphyridium cruentum, Biotechnol. Bioeng., 1983, 25, 1057–1070 http://dx.doi.org/10.1002/bit.260250414CrossrefGoogle Scholar

  • [2] Oh S.H., Han J.G., Kim Y., Ha J.H., Kim S.S., Jeong M.H., et al., Lipid production in Porphyridium cruentum grown under different culture conditions, J. Biosci. Bioeng., 2009, 108, 429–434 http://dx.doi.org/10.1016/j.jbiosc.2009.05.020CrossrefGoogle Scholar

  • [3] Kathiresan S., Sarada R., Bhattacharya S., Ravishankar G.A., Culture media optimization for growth and phycoerythrin production from Porphyridium purpureum, Biotechnol. Bioeng., 2007, 96, 456–463 http://dx.doi.org/10.1002/bit.21138CrossrefGoogle Scholar

  • [4] Arad S.M., Levy-Ontman O., Red microalgal cellwall polysaccharides: biotechnological aspects, Curr. Opin. Biotechnol., 2010, 21, 358–364 http://dx.doi.org/10.1016/j.copbio.2010.02.008CrossrefGoogle Scholar

  • [5] Patel A.K., Laroche C., Marcati A., Ursu A.V., Jubeau S., Marchal L., et al., Separation and fractionation of exopolysaccharides from Porphyridium cruentum, Bioresource Technol, 2012, In Press, idoi: 10.1016/j.biortech.2012.1012.1038 Google Scholar

  • [6] Heaney-Kieras J., Chapman D.J., Structural studies on the extracellular polysaccharide of the red alga, Porhyridium cruentum, Carbohyd. Res., 1976, 52, 169–177 http://dx.doi.org/10.1016/S0008-6215(00)85957-1CrossrefGoogle Scholar

  • [7] Arad S., Adda M., Cohen E., The potential production of sulfated polysaccharides from Porphyridium, Plant Soil, 1985, 89, 117–127 http://dx.doi.org/10.1007/BF02182238CrossrefGoogle Scholar

  • [8] Becker E.W., Microalgae: biotechnology and microbiology, Cambridge University Press, Cambridge, 1994 Google Scholar

  • [9] John R.P., Anisha G.S., Nampoothiri K.M., Pandey A., Micro and macroalgal biomass: a renewable source for bioethanol, Bioresour. Technol., 2011, 102, 186–193 http://dx.doi.org/10.1016/j.biortech.2010.06.139CrossrefGoogle Scholar

  • [10] Kroen W.K., Raynburn W.R., Influence of growth status and nutrients on extracellular polysaccharide synthesis by the soil agla Chlamydomonas mexicana (Chlorophyceae), J. Phycol., 1984, 20, 253–257 http://dx.doi.org/10.1111/j.0022-3646.1984.00253.xCrossrefGoogle Scholar

  • [11] Brányiková I., Marsalková B., Doucha J., Brányik T., Bisová K., Zachleder V., et al., Microalgaenovel highly efficient starch producers, Biotechnol. Bioeng., 2011, 108, 766–776 http://dx.doi.org/10.1002/bit.23016CrossrefGoogle Scholar

  • [12] Yao C., Ai J., Cao X., Xue S., Zhang W., Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation, Bioresour. Technol., 2012, 118, 438–444 http://dx.doi.org/10.1016/j.biortech.2012.05.030CrossrefGoogle Scholar

  • [13] Kilham S.S., Kreeger D.A., Goulden C.E., Lynn S.G., Effect of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus, Freshwater. Biol., 1997, 38, 591–596 http://dx.doi.org/10.1046/j.1365-2427.1997.00231.xCrossrefGoogle Scholar

  • [14] Lourenco S.O., Lanfer Marquez U.M., Mancini-Filho J., Barbarino E., Aidar E., Changes in biochemical profile of Tetraselmis gracilis I. Comparison of two culture media, Aquaculture, 1997, 148, 153–168 http://dx.doi.org/10.1016/S0044-8486(96)01416-0CrossrefGoogle Scholar

  • [15] Ramus J., The production of extracellular polysaccharide by unicellular red alga Porphyridium aerugineum, J. Phycol., 1972, 8, 97–111 Google Scholar

  • [16] Arad S.M., Friedman O.D., Rotem A., Effect of nitrogen on polysaccharide production in a Porphyridium sp., Appl. Environ. Microbiol., 1988, 54, 2411–2414 Google Scholar

  • [17] Carstensen J., Henriksen P., Heiskanen A.S., Summer algal blooms in shallow estuaries: Definition, mechanisms, and link to eutrophication, Limnol. Oceanogr., 2007, 52, 370–384 http://dx.doi.org/10.4319/lo.2007.52.1.0370CrossrefGoogle Scholar

  • [18] Adda M., Merchuk J.C., Arad S., Effect of nitrate on growth and production of cell-wall polysaccharide by the unicellular red alga Porphyridium, Biomass, 1986, 10, 131–140 http://dx.doi.org/10.1016/0144-4565(86)90061-2CrossrefGoogle Scholar

  • [19] Levy I., Gantt E., Development of photosynthetic activity in Porphyridium purpureum (Rhodophyta) following nitrogen starvation, J. Phycol., 1990, 26, 62–68 http://dx.doi.org/10.1111/j.0022-3646.1990.00062.xCrossrefGoogle Scholar

  • [20] Redfield A.C., The biological control of chemical factors in the environment, Am. Sci., 1958, 46, 205–221 Google Scholar

  • [21] Klausmeier C.A., Litchman E., Daufresne T., Levin S.A., Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton, Nature, 2004, 429, 171–174 http://dx.doi.org/10.1038/nature02454CrossrefGoogle Scholar

  • [22] MacIntyre H.L., Cullen J.J., Using cultures to investigate the physiological ecology of microalgae, In: Andersen R.A., Ed., Algal culturing techniques. Elsevier Academic Press, London, UK, 2005, 287–326 Google Scholar

  • [23] Thepenier C., Gudin C., Studies on optimal conditions for polysaccharide production by Porphyridium cruentum, World J. Microbiol. Biotechnol., 1985, 1, 257–268 http://dx.doi.org/10.1007/BF01742320CrossrefGoogle Scholar

  • [24] Vonshak A., Cohen Z., Richmond A., The feasibility of mass cultivation of Porphyridium, Biomass, 1985, 8, 13–25 http://dx.doi.org/10.1016/0144-4565(85)90032-0CrossrefGoogle Scholar

  • [25] Andersen R.A., Ed. Algal culturing techniques. Elsevier Academic Press, London, UK, 2005 Google Scholar

  • [26] Tunzi M.G., Chu M.Y., Bain R.C., In vivo fluorescence, extracted fluorescence, and chlorophyll concentrations in algal mass measurements, Water Res., 1974, 8, 623–635 http://dx.doi.org/10.1016/0043-1354(74)90121-3CrossrefGoogle Scholar

  • [27] Lavens P., Sorgeloos P., Manual on the production and use of life food for aquaculture, FAO Fisheries Technical Papers T361, FAO, Rome, 1996, ftp://ftp.fao.org/docrep/fao/003/w3732e/w3732e00.pdf Google Scholar

  • [28] Herbert D., Phipps P.J., Strange R.E., Chemical analysis of microbial cells, In: Norris J.R., Ribons D.W., Eds., Methods in microbiology. Academic Press, London, 1971, 209–344 Google Scholar

  • [29] Lien T., Knutsen G., Phosphate as a control factor in cell division of Chlamydomonas reinhardti, studied in synchronous culture, Exp. Cell. Res., 1973, 78, 79–88 http://dx.doi.org/10.1016/0014-4827(73)90040-2CrossrefGoogle Scholar

  • [30] Roessler P.G., Environmental control of glycerolipid metabolism in microalgae: Commercial implications and future research directions, J. Phycol., 1990, 26, 393–399 http://dx.doi.org/10.1111/j.0022-3646.1990.00393.xCrossrefGoogle Scholar

  • [31] Young E.B., Beardall J., Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen starvation and recovery cycle, J. Phycol., 2003, 39, 897–905 http://dx.doi.org/10.1046/j.1529-8817.2003.03042.xCrossrefGoogle Scholar

  • [32] Percival E., Foyle R.A.J., Extracellular polysaccharides of Porphyridium cruentum and Porphyridium aerugineum, Carbohyd. Res., 1979, 72, 165–176 http://dx.doi.org/10.1016/S0008-6215(00)83932-4CrossrefGoogle Scholar

  • [33] Lien T., Knutsen G., Synchronous cultures of Chlamydomonas reinhardti. Synthesis of repressed and derepressed phosphatase during the life cycle, Biochim. Biophys. Acta., 1972, 287, 154–163 http://dx.doi.org/10.1016/0005-2787(72)90338-3CrossrefGoogle Scholar

  • [34] Arrigo K.R., Marine microorganisms and global nutrient cycles, Nature, 2005, 437, 349–355 http://dx.doi.org/10.1038/nature04159CrossrefGoogle Scholar

About the article

Published Online: 2013-11-09

Published in Print: 2014-02-01

Citation Information: Open Life Sciences, Volume 9, Issue 2, Pages 156–162, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-013-0248-z.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

M. del Pilar Sánchez-Saavedra, Fátima Y. Castro-Ochoa, Viridiana Margarita Nava-Ruiz, Duahmet A. Ruiz-Güereca, Ana Laura Villagómez-Aranda, Fabián Siqueiros-Vargas, and Ceres A. Molina-Cárdenas
Journal of Applied Phycology, 2017
Mariajoseph Angelaalincy, Nangan Senthilkumar, Rathinasamy Karpagam, Georgepeter Gnana Kumar, Balasubramaniem Ashokkumar, and Perumal Varalakshmi
ACS Omega, 2017, Volume 2, Number 7, Page 3754
Liliana G Gigova and Natalia J Ivanova
Journal of Biosciences, 2015, Volume 40, Number 2, Page 365
Cíntia Simas-Rodrigues, Helena D. M. Villela, Aline P. Martins, Luiza G. Marques, Pio Colepicolo, and Angela P. Tonon
Journal of Experimental Botany, 2015, Volume 66, Number 14, Page 4097

Comments (0)

Please log in or register to comment.
Log in