Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 9, Issue 2


Volume 10 (2015)

Mediated amperometry reveals two distinct modes of yeast responses to glucose

Rasa Garjonyte / Vytautas Melvydas / Algimantas Paškevičius / Valerijus Rašomavičius / Albertas Malinauskas
Published Online: 2013-11-09 | DOI: https://doi.org/10.2478/s11535-013-0257-y


Mediated amperometry was exploited to monitor intracellular redox activity without cell disruption. Continuous measurements of menadione-mediated glucose currents at carbon paste electrodes with various immobilized intact wild type yeasts (Saccharomyces cerevisiae, Candida pulcherrima, Clavispora lusitaniae, Wickerhamomyces anomalus, Pichia guilliermondii, Kluyveromyces lactis var. lactis, Debaryomyces hansenii, Candida zeymolaydes and Candida tropicalis) revealed two distinct and previously unreported modes of development of the currents during the first 2 to 3 min. after subjection to glucose. A correlation among the values of the currents and the capacities of wild type yeasts to secrete various substances was observed.

Keywords: Yeasts; Menadione; Mediated amperometry; Carbon paste; Glucose

  • [1] Kurtzman C.P., Fell J.W., Boekhout T., The Yeasts: a Taxonomic Study, 5th ed., Elsevier, Amsterdam, 2010 Google Scholar

  • [2] Zhao J., Wang Z., Fu C., Wang M., He Q., The mediated electrochemical method for rapid fermentation ability assessment, Electroanal. 2008, 20, 1587–1592 http://dx.doi.org/10.1002/elan.200804218CrossrefGoogle Scholar

  • [3] Zhao J., Wang M., Yang Z., Gong Q., Lu Y., Yang Z., Mediated electrochemical measurement of the inhibitory effects of furfural and acetic acid on Saccharomyces cerevisiae and Candida shehatae, Biotechnol. Lett., 2005, 27, 207–211 http://dx.doi.org/10.1007/s10529-004-7884-3CrossrefGoogle Scholar

  • [4] Wang M., Zhao J., Yang Z., Du Z., Yang Z., Electrochemical insights into the ethanol tolerance of Saccharomyces cerevisiae, Bioelectrochem., 2007, 71, 107–112 http://dx.doi.org/10.1016/j.bioelechem.2007.04.003CrossrefGoogle Scholar

  • [5] Zhao J., Wang Z., Wang M., Wang H., He Q., Zhang H., The interaction mechanisms between Saccharomyces cerevisiae and menadione and its application in toxicology study, Talanta, 2008, 74, 1686–1691 http://dx.doi.org/10.1016/j.talanta.2007.10.024CrossrefGoogle Scholar

  • [6] Baronian K.H.R., Downard A.J., Lowen R.K., Pasco N., Detection of two distinct substrate-dependent catabolic responses in yeast cells using a mediated electrochemical method, Appl. Microbiol. Biotechnol., 2002, 60, 108–113 http://dx.doi.org/10.1007/s00253-002-1108-3CrossrefGoogle Scholar

  • [7] Heiskanen A., Yakovleva J., Spegel C., Taboryski R., Koudelka-Hep M., Emneus J., et al., Amperometric monitoring of redox activity in living yeast cells: comparison of menadione and menadione bisulfite as electron transfer mediators, Electrochem. Commun., 2004, 6, 219–224 http://dx.doi.org/10.1016/j.elecom.2003.12.003CrossrefGoogle Scholar

  • [8] Spegel C.F., Heiskanen A.R., Kostesha N.V., Johanson T.H., Gorwa-Grauslund M.F., Koudelka-Hep M., et al., Amperometric response from the glycolytic versus the pentose phosphate pathway in Saccharomyces cerevisiae cells, Anal. Chem., 2007, 79, 8919–8926 http://dx.doi.org/10.1021/ac0710679CrossrefGoogle Scholar

  • [9] Zhao J., Yang Z., Gong Q., Lu Y., Yang Z., Wang M., Electrochemical insights into the glucose metabolism pathways within Saccharomyces cerevisiae, Anal. Lett., 2005, 38, 89–98 http://dx.doi.org/10.1081/AL-200043461CrossrefGoogle Scholar

  • [10] Heiskanen A., Spegel C., Kostesha N., Lindahl S., Ruzgas T., Emneus J., Mediator-assisted simultaneous probing of cytosolic and mitochondrial redox activity in living cells, Anal. Biochem., 2009, 384, 11–19 http://dx.doi.org/10.1016/j.ab.2008.08.030CrossrefGoogle Scholar

  • [11] Kostesha N.V, Almeida J.R.M., Heiskanen A.R., Gorwa-Grauslund M.F., Hahn-Hagerdal B., Emneus J., Electrochemical probing in vivo 5-hydoxymethyl furfural reduction in Saccharomyces cerevisiae, Anal. Chem., 2009, 81, 9896–9901 http://dx.doi.org/10.1021/ac901402mCrossrefGoogle Scholar

  • [12] Kostesha N., Heiskanen A., Spegel C., Hahn-Hagerdal B., Gorwa-Grauslund M.F., Emneus J., Real-time detection of cofactor availability in genetically modified living Saccharomyces cerevisiae cells -Simultaneous probing of different geno- and phenotypes, Bioelectrochem., 2009, 76, 180–188 http://dx.doi.org/10.1016/j.bioelechem.2009.02.015CrossrefGoogle Scholar

  • [13] Rolland F., Winderickx J., Thevelein J.M., Glucosesensing and -signalling mechanisms in yeast, FEMS Yeast Res., 2002, 2, 183–201 CrossrefGoogle Scholar

  • [14] Santangelo G.M, Glucose signaling in Saccharomyces cerevisiae, Microbiol. Mol. Biol. Rev., 2006, 70 253–282 http://dx.doi.org/10.1128/MMBR.70.1.253-282.2006CrossrefGoogle Scholar

  • [15] Gancedo J.M., The early steps of glucose signaling in yeast, FEMS Microbiol. Rev., 2008, 32, 673–704 http://dx.doi.org/10.1111/j.1574-6976.2008.00117.xCrossrefGoogle Scholar

  • [16] Busti S., Coccetti P., Alberghina L., Vanoni M., Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae, Sensors, 2010, 10, 6195–6240 http://dx.doi.org/10.3390/s100606195CrossrefGoogle Scholar

  • [17] Gulbiniene G., Kondratiene L, Jokantaite T., Serviene E., Melvydas V., Petkuniene G., Occurrence of killer yeast strains in fruit and berry wine yeast populations, Food Technol. Biotechnol., 2004, 42, 159–163 Google Scholar

  • [18] Melvydas V., Serviene E., Cernishova O., Petkuniene G., A novel X factor secreted by yeasts inhibits Saccharomyces cerevisiae K1, K2 and K28 killer toxins, Biologija, 2007, 53, 32–35 Google Scholar

  • [19] Melvydas V., Serviene E., Kondratiene L., Cernysova O., Diversity of Saccharomyces cerevisiae killer strains in Lithuania, Botanica Lituanica, 2009, 15, 209–215 Google Scholar

  • [20] Bab’eva I.P., Golubev V.I., Methods of yeast isolation and identification, Moscow, Pischevaya promyshlennost, 1979 (in Russian) Google Scholar

  • [21] Leaw S.N., Chang H.C., Sun H.F., Barton R., Bouchara J.P., Chang T.C., Identification of medically important yeast species by sequence analysis of the internal transcribed spacer regions, J. Clin. Microbiol., 2006, 44, 693–699 http://dx.doi.org/10.1128/JCM.44.3.693-699.2006CrossrefGoogle Scholar

  • [22] Wang J., Analytical Electrochemistry, 2nd Edition, Wiley-WCH, 2000 http://dx.doi.org/10.1002/0471228230CrossrefGoogle Scholar

  • [23] Castro F.A.V., Herdeiro R.S., Panek A.D., Eleutherio E.C.A., Pereira M.D., Menadione stress in Saccharomyces cerevisiae strains deficient in the glutathione transferases, Biochim. Biophys. Acta, 2008, 1770, 213–220 http://dx.doi.org/10.1016/j.bbagen.2006.10.013CrossrefGoogle Scholar

  • [24] Kim I.S., Sohn H.Y., Jin I., Adaptive stress response to menadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377, J. Microbiol., 2011, 49, 816–823 http://dx.doi.org/10.1007/s12275-011-1154-6CrossrefGoogle Scholar

  • [25] Kraakman L., Lemaire K., Ma P., Teunissen A.W.R.H., Donaton M.C.V., van Dijck P., et al., A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose, Mol. Microbial., 1999, 32, 1002–1012 http://dx.doi.org/10.1046/j.1365-2958.1999.01413.xCrossrefGoogle Scholar

  • [26] Rolland F., de Winde J.H., Lemaire K., Boles E., Thevelein J.M., Winderkx J., Glucose-induced cAMP signaling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process, Mol. Microbiol., 2000, 38, 348–358 http://dx.doi.org/10.1046/j.1365-2958.2000.02125.xCrossrefGoogle Scholar

  • [27] Portela P., Moreno S., Glucose-dependent activation of protein kinase A activity in Saccharomyces cerevisiae and phosphorylation of its TPK1 catalytic subunit, Cell Signal., 2006, 18, 1072–1086 http://dx.doi.org/10.1016/j.cellsig.2005.09.001Google Scholar

  • [28] Kresnowati M.T.A. P., van Winden W.A., Almering M.J.H., ten Pierick A., Ras C., Knijnenburg T.A, et al., When transcriptome meets metabolome: fast cellular responses to sudden relief of glucose limitation, Mol. Syst. Biol., 2006, 2, 49 http://dx.doi.org/10.1038/msb4100083CrossrefGoogle Scholar

  • [29] Sipiczki M., Metschnikovia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion, Appl. Environ. Microbiol., 2006, 72, 6716–6724 http://dx.doi.org/10.1128/AEM.01275-06CrossrefGoogle Scholar

  • [30] Bendova O., The killer phenomena in yeasts, Folia Microbiol., 1986, 31, 422–433 http://dx.doi.org/10.1007/BF02936607CrossrefGoogle Scholar

  • [31] Magliani, W. Conti S., Gerloni M., Bertolotti D., Polonelli L., Yeast killer systems, Clin. Microbiol. Rev., 1997, 10, 369–400 Google Scholar

  • [32] Marquina D., Santos A., Peinado J.M., Biology of killer yeasts, Int. Microbiol., 2002, 5, 65–71 http://dx.doi.org/10.1007/s10123-002-0066-zCrossrefGoogle Scholar

  • [33] Santos A., Mauro M.S., Bravo E., Marquina D., PMKT2, a new killer toxin from Pichia membranifaciens, and its promising biotechnological properties for control of the spoilage yeast Bretanomyces bruxellensis, Microbiol., 2009, 155, 624–634 http://dx.doi.org/10.1099/mic.0.023663-0CrossrefGoogle Scholar

About the article

Published Online: 2013-11-09

Published in Print: 2014-02-01

Citation Information: Open Life Sciences, Volume 9, Issue 2, Pages 173–181, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-013-0257-y.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in