Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 9, Issue 7

Issues

Volume 10 (2015)

In vitro organogenesis secondary metabolite production and heavy metal analysis in Swertia chirayita

Vijay Kumar / Shailesh Singh / Rajib Bandopadhyay / Madan Sharma / Sheela Chandra
Published Online: 2014-04-30 | DOI: https://doi.org/10.2478/s11535-014-0300-7

Abstract

An efficient protocol of plant regeneration through direct and indirect organogenesis in Swertia chirayita was developed. Explants cultured on Murashige and Skoog medium supplemented with 2,4-D (0.5 mg L−1) with combination of Kinetin (0.5 mg L−1) showed the highest frequency (84%) of callusing and 1.0mg L−1 6-benzyladenine (BA) in combination with (100 mg L−1) Adenine sulphate (Ads) + (0.1 mg L−1) Indole acetic acid (IAA) was excellent for maximum adventitious shoot (12.69 ± 1.30) formation in four week of culture. A maximum number of (7.14 ± 0.99) shoots were developed per leaf explants through direct organogenesis. The highest frequency of rooting (11.46 ± 1.56) was observed on MS medium augmented with IAA (1.0 mg L−1). Well-rooted shoots transferred to plastic pots containing a soilrite: sand mix and then moved to the greenhouse for further growth and development. Four major secondary metabolites were analyzed and quantified using high performance liquid chromatography. Amount of secondary metabolites was found significantly higher, in in vitro plantlets compared to in vivo plantlets and callus raised from S. chirayita. Higher heavy metal accumulation in in vitro as compared to in vivo plantlets correlates higher secondary metabolite production supporting that they play regulatory role in influencing the plant secondary metabolism.

Keywords: Organogenesis; High Performance Liquid Chromatography; Swertia chirayita; Secondary metabolites

  • [1] Chaudhuri R.K., Pal A., Jha B.T., Production of genetically uniform plants from nodal explants of Swertia chirata Buch. Ham. ex Wall-a critically endangered medicinal herb, In Vitro Cell. Dev. Biol. Plant., 2007, 43, 467–472 http://dx.doi.org/10.1007/s11627-007-9095-9CrossrefGoogle Scholar

  • [2] Kar A., Choudhary B.K., Bandopadhyay N.G., Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats, J. Ethnopharmacol., 2003, 84, 105–108 http://dx.doi.org/10.1016/S0378-8741(02)00144-7CrossrefGoogle Scholar

  • [3] Saha P., Mandal S., Das A., Das P.C., Das S., Evaluation of the anticarcinogenic activity of Swertia chirata Buch-Ham, an Indian medicinal plant, on DMBA induced mouse skin carcinogenesis model, Phytother. Res., 2004, 18, 373–378 http://dx.doi.org/10.1002/ptr.1436CrossrefGoogle Scholar

  • [4] Tripathi R., Mohan H., Kamat J.P., Modulation of oxidative damage by natural products, Food. Chem., 2005, 100, 81–90 http://dx.doi.org/10.1016/j.foodchem.2005.09.012CrossrefGoogle Scholar

  • [5] Chandra S., Kumar V., Bandopadhyay R., Sharma M.M., SEM and Elemental Studies of Swertia chirayita: A Critically Endangered Medicinal Herb of Temperate Himalayas, Curr. Trend. Biotechnol. Pharm., 2012, 6, 373–380 Google Scholar

  • [6] Joshi P., Dhawan V., Swertia chirayita an overview, Curr. Sci., 2005, 89, 635–640 Google Scholar

  • [7] Balaraju K., Agastain P., Ignacimuthu S., Micropropagation of Swertia chirata Buch.-Hams. ex Wall.:a critically endangered medicinal herb, Acta Physiol. Plant., 2009, 31, 487–494 http://dx.doi.org/10.1007/s11738-008-0257-0CrossrefGoogle Scholar

  • [8] Chaudhuri R.K., Pal A., Jha B.T., Conservation of Swertia chirata through direct shoot multiplication from leaf explants, Plant Biotechnol. Rep., 2008, 2, 213–218 http://dx.doi.org/10.1007/s11816-008-0064-5CrossrefGoogle Scholar

  • [9] Chaudhuri R.K., Pal A., Jha B.T., Regeneration and characterization of Swertia chirata Buch. -Ham ex wall. Plants from immature seed cultures, Sci Hort., 2009, 120, 107–114 http://dx.doi.org/10.1016/j.scienta.2008.09.022CrossrefGoogle Scholar

  • [10] Kumar V., Chandra S., Efficient regeneration and antioxidant activity of the endangered species Swertia chirayita. Int. J. Pharm. Biosci., 2013, 4, 823–833 Google Scholar

  • [11] Kumar V., Chandra S., High frequency somatic embryogenesis and synthetic seed production of the endangered species Swertia chirayita, Biologia., 2014, 69, 186–192 http://dx.doi.org/10.2478/s11756-013-0305-0CrossrefGoogle Scholar

  • [12] Bisht S.S., Bisht N.S., Callus induction studies in different explants of Swertia angustifolia (BuchHam), Plant Archives., 2008, 8, 713–716 Google Scholar

  • [13] Tao H., Jing X., Lina Y., Haitao W., An Efficient Method for Plant Regeneration from Calli of Swertia mussotii, an Endangered Medicinal Herb, Am. J. Plant. Sci., 2012, 3, 904–908 http://dx.doi.org/10.4236/ajps.2012.31004CrossrefGoogle Scholar

  • [14] Pant N., Jain D.C., Bhakmi R.S., Phytochemicals from genus Swertia and their biological activities, Ind. J. Chem., 2000, 39, 565–586 Google Scholar

  • [15] Guha S., Ghosal S., Chattopadhyay U., Antitumor, Immunomodulatory and Anti-HIV effect of Mangiferin, a Naturally Occuring Glucosylxanthone, Chemotherapy., 1996, 42, 443–451 http://dx.doi.org/10.1159/000239478CrossrefGoogle Scholar

  • [16] Sanchez G.M., Re L., Guiliani A., Nunez-Selles A.J., Davison G.P., Leon-Fernandez O.S., Protective effects of Mangifera indica L. extract, mangiferin and selected antioxidants against TPA-induced biomolecules oxidation and peritoneal macrophage activation in mice, Pharmacol. Res., 2000, 42, 565–573 http://dx.doi.org/10.1006/phrs.2000.0727CrossrefGoogle Scholar

  • [17] Garcia D., Leiro J., Delgado R., Sanmartin M.L., Ubeira F.M., Mangifera indica L. extract (Vimang) and mangeferin modulate mouse humoral immune responses, Phytother Res., 2003, 17, 1182–1187 http://dx.doi.org/10.1002/ptr.1338CrossrefGoogle Scholar

  • [18] Saha P., Mandal S., Das A., Das S., Amarogentin can reduce hyperproliferation by downregulation of Cox-II and upregulation of apoptosis in mouse skin carcinogenesis model, Cancer lett., 2006, 244, 252–259 http://dx.doi.org/10.1016/j.canlet.2005.12.036CrossrefGoogle Scholar

  • [19] Yamahara J., Kobayashi M., Matsuda H., Aoki S., Anticholinergic action of Swertia japonica and an active constituent, J. Ethnopharmacol., 1991, 33, 31–35 http://dx.doi.org/10.1016/0378-8741(91)90157-9CrossrefGoogle Scholar

  • [20] EI-Sedawy A.I., Shu Y.Z., Hattori M., Kobashi K., Namba T., Metaboliosm of Swertiamarin from Swertia japonica by Human Intestinal Bacteria, Planta Med., 1989, 55, 147–15 http://dx.doi.org/10.1055/s-2006-961909CrossrefGoogle Scholar

  • [21] Murashige T., Skoog F., A revised medium for rapid growth and bio-assays with tobacco tissue cultures, Physiol Plant., 1962, 15, 473–497 http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.xCrossrefGoogle Scholar

  • [22] Pant M., Bisht P., Gusain M.P., in vitro propagation through root-derived callus cultures of Swertia chirata Buch.-Ham ex Wall, Afr. J. Biotechnol., 2012, 11, 7408–7416 Google Scholar

  • [23] Zeybek E., Önde S., Kaya Z., Improved in vitro micropropagation method with adventitious corms and roots for endangered saffron, Cent. Eur. J. Biol., 2012 7, 138–145 http://dx.doi.org/10.2478/s11535-011-0102-0CrossrefGoogle Scholar

  • [24] Wang L., Lizhe A., Yanping Hu., Lixin W., Yi L., Influence of phytohormones and medium on the shoot regeneration from the leaf of S. chirayita Buch. -Ham. ex wall. in vitro, Afr. J. Biotechnol., 2009, 8, 2513–2517 Google Scholar

  • [25] Koul S., Suri K.A., Suri P., Dutt M., Sambyal A., Ahuja A., Kaul M.K., Protocol for in vitro regeneration and marker glycoside assessment in Swertia chirata Buch-Ham In: Methods in Molecular Biology, Protocols for In Vitro cultures and secondary metabolite analysis of Aromatic acid and medicinal plants., 2009, 547, 139–153 Google Scholar

  • [26] Dhar U., Upreti J., In vitro regeneration of a mature leguminous liana (Bauhinia vahlii) (Wight and Arnott), Plant Cell. Rep., 1999, 18, 664–669 http://dx.doi.org/10.1007/s002990050639CrossrefGoogle Scholar

  • [27] Husain M.K., Anis M., Shahzad A., In vitro propagation of a multipurpose leguminous tree (Pterocarpus marsupium Roxb.) using nodal explants, Acta Physiol. Plant., 2008, 30, 353–359 http://dx.doi.org/10.1007/s11738-007-0130-6CrossrefGoogle Scholar

  • [28] Arias A.M., Valverde J.M., Fonseca P.R., Melara M.V, In vitro plant regeneration system for common bean (Phaseolus vulgaris): effect of N6-benzylaminopurine and adenine sulphate, Electron. J. Biotechnol., 2010, 13, 1–8 Google Scholar

  • [29] Raha S., Roy S.C., In vitro plant regeneration in Holarrhena antidysenterica Wall. through high frequency axillary shoot proliferation, In Vitro Cell. Dev. Biol. Plant., 2001, 37, 232–236 http://dx.doi.org/10.1007/s11627-001-0041-yCrossrefGoogle Scholar

  • [30] Ramesh M., Saravanakumar R.M., Pandian S.K., Benzyl amino purine and adenine sulphate induced multiple shoot and root induction from nodal explants of Brahmi, Bacopa monnieri (Linn.) Penn, Nat. Prod. Rep., 2006, 5, 44–51 Google Scholar

  • [31] Siwach P., Chanana S., Gill A.R., Dhanda P., Rani J., Sharma K., Rani H., Kumari D., Effects of adenine sulphate, glutamine and casein hydrolysate on in vitro shoot multiplication and rooting of Kinnow mandarin (Citrus reticulata Blanco), Afr. J. Biotechnol., 2012, 11, 15852–15862 Google Scholar

  • [32] Shukla S.K., Shukla S., Koche V., Mishra S.K., In vitro propagation of Tikhur Curcuma angustifolia Roxb: a starch yielding plant, Indian. J. Biotechnol., 2007, 6, 274–276 Google Scholar

  • [33] Rao S., Patil P., Kaviraj C.P., Callus induction and organogenesis from various explants in Vigna radiata (L.) Wilczek, Indian. J. Biotechnol., 2005, 4, 556–560 Google Scholar

  • [34] Ahuja A., Koul S., Kaul B.L., Verma N.K., Kaul M.K., Raina R.K., Qazi G.N., Media compositions for faster propagation of Swertia chirayita, 2003, WO 03/045132 AL. U.S. Patent 7238527 Google Scholar

  • [35] Suryawanshi S., Mehrotra N., Asthana R.K., Gupta R.C., Liquid chromatography/tandem mass spectrometric study and analysis of xanthone and secoiridoid glycoside composition of Swertia chirata, a potent antidiabetic, Rapid Commun. Mass. Spectrom., 2006, 20, 3761–3768 http://dx.doi.org/10.1002/rcm.2795CrossrefGoogle Scholar

  • [36] Krstic D., Jankovic T., Fodulovic K.S., Menkovic N., Grubisic D., Secoiridoids and xanthones in the shoots and roots of Centaurium pulchellum cultured in vitro, In Vitro Cell. Dev. Biol. Plant., 2003, 39, 203–207 http://dx.doi.org/10.1079/IVP2002366CrossrefGoogle Scholar

  • [37] Jankovic T., Krstic D., Fodulovic S.K., Menkovic N., Grubisic D., Xanthone compounds of Centaurium erythraea grown in nature and cultured in vitro, Pharmacol. Lett., 2000, 10, 23–25 Google Scholar

  • [38] Ishimary K., Sudo H., Satake M., Matsunaga Y., Hasegawa Y., Takemoto S., Shimomura K., Amarogentin, amaroswerin and four xanthones from hairy root cultures of Swertia japonica, Phytochemistry., 1990, 29, 1563–1565 http://dx.doi.org/10.1016/0031-9422(90)80122-WCrossrefGoogle Scholar

  • [39] Menkovic N., Fodulovic S.K., Momcilovic I., Grubisic D., Quantitative determination of secoiridoid and compounds in Gentiana lutea cultured in vitro, Planta. Med., 2000, 66, 96–98 http://dx.doi.org/10.1055/s-0029-1243123CrossrefGoogle Scholar

  • [40] Hou X., Jones B.T., Inductively Coupled Plasma/Optical Emission Spectrometry. In: Meyers R.A., (Ed.), Encyclopedia of Analytical Chemistry. John Wiley and Sons Ltd, Chichester, 2000 Google Scholar

  • [41] Marschner H., Mineral nutrition of higher plants, Academic press, London, 1995 Google Scholar

  • [42] Sngh S., Sinha S., Accumulation of metals and its effects in Brassica juncea (L.) czern. (cv. Rohini) grown on various amendments of tannery waste, Exotoxical Environ Saf, 2005, 62, 118–127 http://dx.doi.org/10.1016/j.ecoenv.2004.12.026CrossrefGoogle Scholar

  • [43] Kurosaki F., Induction and Activation of Plant Secondary Metabolism by External Stimuli, Drug Discovery Research in Pharmacognosy, In: Vallisuta O., (Ed.), In Tech, 2012 Google Scholar

About the article

Published Online: 2014-04-30

Published in Print: 2014-07-01


Citation Information: Open Life Sciences, Volume 9, Issue 7, Pages 686–698, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-014-0300-7.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Vijay Kumar and Johannes Van Staden
Frontiers in Pharmacology, 2016, Volume 6
[3]
Abinaya Manivannan, Prabhakaran Soundararajan, Yoo Gyeong Park, and Byoung Ryong Jeong
BioMed Research International, 2015, Volume 2015, Page 1
[4]
Vijay Kumar and Sheela Chandra
Physiology and Molecular Biology of Plants, 2015, Volume 21, Number 1, Page 51

Comments (0)

Please log in or register to comment.
Log in