Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 9, Issue 7

Issues

Volume 10 (2015)

The use of heavy metals in mycoremediation of synthetic dyes

Tiberius Balaeş / Cătălin Tănase / Claudiu Butnariu
  • Department of Geology, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, 700505, Iasi, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-30 | DOI: https://doi.org/10.2478/s11535-014-0302-5

Abstract

Synthetic dyes represent a major class of toxic pollutants that are resistant to biological degradation, and heavy metals play a special role in this process. In this study, two isolates of lignicolous macromycetes, Lenzites betulina as well as another species less frequently studied, Trametes gibbosa, were tested in order to assess their remediation potential against three different synthetic dyes under specific conditions. The effect of heavy metal ions in the discoloration of synthetic dyes process, and the optimal concentration of manganese ions necessary were evaluated. The dyes’ discoloration efficiency of the fresh isolates were compared to the isolates maintained by refrigeration, isolates that were repeatedly sub-cultivated and isolates that were previously grown on dye-supplemented media, and then were assessed. The discoloration process was evaluated in liquid nutrient media, 10 replicates were used for each working version. Evaluation of discoloration rate was obtained by using a UV-VIS spectrometer. The results were interpreted statistically by the Kruskal-Wallis test and by use of a new complex method, Multiple Factor Analysis. The fresh isolates showed the highest discoloration capacity while the isolates previously grown on the dye-supplemented media presented a low discoloration rate. Manganese ions gave a positive effect on enzyme induction while copper and cobalt ions inhibited the process.

Keywords: Bioremediation; Synthetic dyes; Lenzites betulina; Trametes gibbosa; Heavy metals; Inoculum

  • [1] Kanagaraj J., Senthil V.T., Mandal A.B., Biological method for decolourisation of an azo dye, clean technology to reduce pollution load in dye waste water, Clean Techn Environ Policy, 2012, 14, 565–572 http://dx.doi.org/10.1007/s10098-011-0416-7CrossrefGoogle Scholar

  • [2] Srivastava S., Sinha R., Roy D., Toxicological effects of Malachite green, Aquatic Toxicology, 2004, 66(3), 319–29 http://dx.doi.org/10.1016/j.aquatox.2003.09.008CrossrefGoogle Scholar

  • [3] Corso C.R., Almeida A.C.M., Bioremediation of dyes in textile effluents by Aspergillus oryzae, Microb. Ecol., 2009, 57, 384–390 http://dx.doi.org/10.1007/s00248-008-9459-7CrossrefGoogle Scholar

  • [4] Sajan C.P., Basavalingu B., Ananda S., Byrrapa K., Comparative study on the photodiscoloration of Indigo carmine dye using commercial TiO2 and natural tutile, J. Geol. Soc. India, 2011, 77, 82–88 http://dx.doi.org/10.1007/s12594-011-0010-yCrossrefGoogle Scholar

  • [5] Kalyani D.C., Telke A.A., Surwase S.N., Jadhav S.B., Lee J.-K., Jadhav J.P., Effectual decolorization and detoxification of triphenylmethane dye Malachite green (MG), by Pseudomonas aeruginosa NCIM 2074 and its enzyme system, Clean Techn Environ Policy, 2012, 14, 989–1001 http://dx.doi.org/10.1007/s10098-012-0473-6CrossrefGoogle Scholar

  • [6] Singh S., Pakshirajan K., Daverey A., Screening and optimization of media constituents for decolourization of Mordant Blue-9 dye by Phanerochaete chrysosporium, Clean Techn Environ Policy, 2010, 12, 313–323 http://dx.doi.org/10.1007/s10098-009-0213-8Google Scholar

  • [7] Liers C., Bobeth C., Pecyna M., Ullrich R., Hofrichter M., DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes, Appl Microbiol Biotechnol, 2010, 85, 1869–1879 http://dx.doi.org/10.1007/s00253-009-2173-7CrossrefGoogle Scholar

  • [8] Moharčič M., Teodorovič S., Golob V., Friedrich J., Fungal and enzymatic decolourisation of artificial textile dye bath, Chemosphere, 2006, 63, 1709–1717 http://dx.doi.org/10.1016/j.chemosphere.2005.09.063CrossrefGoogle Scholar

  • [9] Palmieri G., Cennamo G., Sannia G., Remazol Brilliant Blue R decolourisation by the fungus Pleurotus ostreatus and its oxidative enzymatic system, Enz Microbiol Technol, 2005, 36, 17–24 http://dx.doi.org/10.1016/j.enzmictec.2004.03.026CrossrefGoogle Scholar

  • [10] Karimi S., Abdulkhani A., Ghazali A.H.B., Ahmadun F.R., Karimi A., Color remediation of chemimecanical pulping effluent using combination of enzymatic treatment and Fenton reaction, Desalination, 2009, 249, 870–877 http://dx.doi.org/10.1016/j.desal.2009.02.067CrossrefGoogle Scholar

  • [11] Trupkin S., Levin L., Forchiassin F., Viole A., Optimization of a culture medium for ligninolytic enzyme production and synthetic dye decolorization using response surface methodology, J Ind Microbiol Biotechnol, 2003, 30, 682–690 http://dx.doi.org/10.1007/s10295-003-0099-0CrossrefGoogle Scholar

  • [12] Anastasi A., Prigione V., Varese G.C., Industrial dye discoloration and detoxification by basidiomycetes belonging to different eco-physiological groups, J Hazar Mater, 2010, 177, 260–267 http://dx.doi.org/10.1016/j.jhazmat.2009.12.027CrossrefGoogle Scholar

  • [13] Wang Z., Cai Y., Liao X., Zhang F., Zhang D., Li Z., Production and characterization of a novel laccase with cold adaptation and high thermal stability from an isolated fungus, Appl Biochem Biotechnol, 2010, 162, 280–294 http://dx.doi.org/10.1007/s12010-009-8801-yCrossrefGoogle Scholar

  • [14] Fonseca M.I., Shimizu E., Zapata P.D., Villalba L.L., Copper inducing effect on laccase production of white rot fungi native from Misiones Argentina, Enz Microb Technol, 2010, 46, 534–539 http://dx.doi.org/10.1016/j.enzmictec.2009.12.017CrossrefGoogle Scholar

  • [15] Faraco V., Piscitelli A., Sannia G., Giardina P., Identification of a new member of the dyedecolorizing peroxidase family from Pleurotus ostreatus, World J Microbiol Biotechnol, 2007, 23, 889–89. http://dx.doi.org/10.1007/s11274-006-9303-5CrossrefGoogle Scholar

  • [16] Hernández-Luna C.E., Gutiérrez-Soto G., Salcedo-Martínez S.M., Screening for decolorizing basidiomycetes in Mexico, World J Microbiol Biotechnol, 2007, 24(4), 465–473 http://dx.doi.org/10.1007/s11274-007-9495-3CrossrefGoogle Scholar

  • [17] Balaeş T., Tănase C., Mangalagiu I., Lignicolous macromycetes: potential candidates for bioremediation of the synthetic dye, Rev Chim-Bucharest, 2013, 64(9), 790–795 Google Scholar

  • [18] Pointing S.B., Bucher V.V.C., Vrijmoed L.L.P., Dye decolorization by sub-tropical basidiomycetous fungi and the effect of metals on decolorizing ability, World J Microbiol Biotechnol, 2000, 16, 199–205 http://dx.doi.org/10.1023/A:1008910113322CrossrefGoogle Scholar

  • [19] Murugesan K., Yang I.-H., Kim Y.-M., Jeon J.-R., Chang Y.-S., Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds, Appl Microbiol Biotechnol, 2009, 82, 341–350 http://dx.doi.org/10.1007/s00253-008-1819-1CrossrefGoogle Scholar

  • [20] Eichlerová I., Homolka L., Lisá L., Nerud F., Orange G and Remazol Brilliant Blue R decolorization by white rot fungi Dichomitus squalens, Ischnoderma resinosum and Pleurotus calyptratus, Chemosphere, 2005, 60, 398–404 http://dx.doi.org/10.1016/j.chemosphere.2004.12.036CrossrefGoogle Scholar

  • [21] Levin L., Melignani E., Ramos A.M., Effect of nitrogen sources and vitamins on ligninolytic enzyme production by selected culture filtrates, Biores Technol, 2010, 101, 4554–4563 http://dx.doi.org/10.1016/j.biortech.2010.01.102CrossrefGoogle Scholar

  • [22] Balaeş T., Tănase C., Culture description of some spontaneous lignicolous macromycetes species, J Plant Develop, 2012, 19, 83–98 Google Scholar

  • [23] Bernicchia A., Fungi Europaei, Vol. X, Polyporaceae s.l., Candusso, Bologna, 2005 Google Scholar

  • [24] Ryvarden L., Gilbertson R.L., European Polypores, Vol. I, Abortiporus — Lindtneria, Fungiflora, Oslo, 1993 Google Scholar

  • [25] Ryvarden L., Gilbertson R.L., European Polypores, Vol. II, Meripilus — Tyromyces, Fungiflora, Oslo, 1994 Google Scholar

  • [26] Stalpers J.A., Identification of wood-inhabiting Aphyllophorales in pure culture, Studies in Mycology, 1978, 16, 1–248 Google Scholar

  • [27] Levin L., Papinutti L., Forchiassin F., Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes, Biores Technol, 2004, 94, 169–176 http://dx.doi.org/10.1016/j.biortech.2003.12.002CrossrefGoogle Scholar

  • [28] Singh S., Pakshirajan K., Enzyme activities and decolourization of single and mixed azo dyes by the white-rot fungus Phanerochaete chrysosporium, Int Biodeter Biodegr, 2010, 64, 146–150 http://dx.doi.org/10.1016/j.ibiod.2009.11.003CrossrefGoogle Scholar

  • [29] Couto S.R., Sanromán M., Gubitz G.M., Influence of redox mediators and metal ions on synthetic acid dye decolourization by crude laccase from Trametes hirsuta, Chemosphere, 2005, 58, 417–422 http://dx.doi.org/10.1016/j.chemosphere.2004.09.033CrossrefGoogle Scholar

  • [30] Baldrian P., Purification and characterization of laccase from the white-rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme, Appl Microbiol Biotechnol, 2004, 63, 560–563 http://dx.doi.org/10.1007/s00253-003-1434-0CrossrefGoogle Scholar

  • [31] Chairattanamanokorn P., Kondo R., Ukita M., Prasertsan P., Screening of thermotolerant whiterot fungi for decolorization of wastewaters. Appl Biochem Biotechnol, 2006, 128, 195–204 http://dx.doi.org/10.1385/ABAB:128:3:195CrossrefGoogle Scholar

  • [32] Guillén Y., Palfner G., Machuca A., Screening for lignocellulolytic enzymes and metal tolerance in isolates of wood-rot fungi from Chile, Intersciencia, 2011, 36(11), 195–204 Google Scholar

  • [33] Haibo Z., Yinglong Z., Feng H., Peiji G., Jiachuan C., Purification and characterization of a thermostable laccase with unique oxidative characteristics from Trametes hirsuta, Biotechnol Lett, 2009, 31, 837–843 http://dx.doi.org/10.1007/s10529-009-9945-0CrossrefGoogle Scholar

  • [34] Ertan H., Siddiqui K.S., Muenchhoff J., Charlton T., Cavicchioli R., Kinetic and thermodynamic characterization of the functional properties of a hybrid versatile peroxidase using isothermal titration calorimetry, Insight into manganese peroxidase activation and lignin peroxidase inhibition, Biochimie, 2012, 94, 1221–1231 http://dx.doi.org/10.1016/j.biochi.2012.02.012CrossrefGoogle Scholar

  • [35] Esghi H., Alishahib Z., Zokaeib M., Daroodia A., Tabasi E., Decolorization of methylene blue by new fungus, Trichaptum biforme and decolorization of three synthetic dyes by Trametes hirsuta and Trametes gibbosa, Eur J Chem, 2011, 2(4), 463–468 http://dx.doi.org/10.5155/eurjchem.2.4.463-468.425CrossrefGoogle Scholar

About the article

Published Online: 2014-04-30

Published in Print: 2014-07-01


Citation Information: Open Life Sciences, Volume 9, Issue 7, Pages 659–667, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-014-0302-5.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in