Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 9, Issue 7

Issues

Volume 10 (2015)

The impact of increased soil risk elements on carotenoid contents

Dagmar Procházková / Daniel Haisel / Daniela Pavlíková
  • Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 21, Prague 6, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jiřina Száková
  • Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 21, Prague 6, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Naďa Wilhelmová
Published Online: 2014-04-30 | DOI: https://doi.org/10.2478/s11535-014-0304-3

Abstract

A pot experiment was conducted to compare the responses of a non-transgenic tobacco plant (WT) and plants with genetically prolonged life-span (SAG) to risk elements of As, Cd and Zn. Plants were grown in control soil and in soil with higher levels of risk elements. The pigment contents were established by HPLC and chlorophyll fluorescence parameters were measured from slow kinetics after a 15 min dark period with the PAM fluorometer. Top (i.e. young) leaves of both WT and SAG plants were more sensitive to photoinhibition caused by these risk elements but plants showed acclimation to such elements in the bottom leaves. Plants differed in the participation of individual pigments of xanthophyll cycle: increased levels of risk elements seem to stimulate especially first (violaxanthin to antheraxanthin) and second (anhtheraxanthin to zeaxanthin) steps of the cycle in WT plants. In SAG plants, toxic elements caused an increase in the content, particularly of the initial compound of the cycle — violaxanthin.

Keywords: Arsenic; Cadmium; Zinc; Xanthophyll cycle; Neoxanthin; Lutein

  • [1] Cullen W.R., Reimer K.J., Arsenic specification in the environment, Chem. Rev., 1989, 89, 713–764 http://dx.doi.org/10.1021/cr00094a002CrossrefGoogle Scholar

  • [2] Requejo R., Tena M., Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity, Phytochemistry, 2005, 66, 1519–1528 http://dx.doi.org/10.1016/j.phytochem.2005.05.003CrossrefGoogle Scholar

  • [3] Janoušková M., Pavlíková, D., Cadmium immobilization in the rhizosphere of arbuscular mycorrhizal plants by the fungal extraradical mycelium, Plant Soil, 2010, 332, 511–520 http://dx.doi.org/10.1007/s11104-010-0317-2CrossrefGoogle Scholar

  • [4] Baker A.J.M., Proctor J., The influence of cadmium, copper, lead, and zinc on the distribution and evolution of metallophytes in the British Isles, Plant Syst. Evol., 1990, 173, 91–108 http://dx.doi.org/10.1007/BF00937765CrossrefGoogle Scholar

  • [5] Ernst W.H.O., Verkleij J.A.C., Schat H., Metal tolerance in plants, Acta Botanica Neerlandica, 1992, 41, 229–248 CrossrefGoogle Scholar

  • [6] Rengel Z., Ecotypes of Holcus lanatus tolerant to zinc toxicity also tolerate zinc deficiency, Ann. Bot., 2000, 86, 1119–1126 http://dx.doi.org/10.1006/anbo.2000.1282CrossrefGoogle Scholar

  • [7] Sagardoy R., Morales F., López-Millán A.F., Abadía A., Abadía J., Effects if zinc toxicity in sugar beet (Beta vulgaris L.) plants grown in hydroponics, Plant Biol., 2009, 11, 339–350 http://dx.doi.org/10.1111/j.1438-8677.2008.00153.xCrossrefGoogle Scholar

  • [8] Kusznierewicz B., Baczek-Kwinta R., Bartoczek A., Piekarska A., Huk A., Manikowska A., Antokiewicz J., Namiesnik J., Konieczka P., The dose dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. Capitata f. Alba), Environ. Toxicol., 2012, 31, 2482–2489 http://dx.doi.org/10.1002/etc.1977CrossrefGoogle Scholar

  • [9] Finnegan P.M., Chen W., Arsenic toxicity: the effects on plant metabolism, Front. Physiol., 2012, 3, 1–18 http://dx.doi.org/10.3389/fphys.2012.00182CrossrefGoogle Scholar

  • [10] Stobart A.K., Griffith W.T., Bukhari I.A., Sherwood R.P., The effect of Cd on the biosynthesis of chlorophyll in leaves of barley, Physiol. Plant., 1985, 63, 293–298 http://dx.doi.org/10.1111/j.1399-3054.1985.tb04268.xCrossrefGoogle Scholar

  • [11] Babu N.G., Sarma P.A., Attitalla I.H., Murthy S.D.S., Effect of selected heavy metal ions on the photosynthetic electron transport and energy transfer in the thylakoid membrane of the Cyanobacterium, Spirulina platensis, Acad. J. Plant Sci., 2010, 3, 46–49 Google Scholar

  • [12] Belatik A., Hotchandani S., Carpentier R., (2013) Inhibition of the water oxidizing complex of Photosystem II and the reoxidation of the quinone acceptor QA- by Pb2+, PLoS ONE, 2013, 8, e68142. doi:10.1371/journal.pone.0068142 http://dx.doi.org/10.1371/journal.pone.0068142Google Scholar

  • [13] Küpper H., Šetlík I., Spiller M., Küpper F.C., Prášil O., Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation, J. Phycol., 2002, 38, 429–441 http://dx.doi.org/10.1046/j.1529-8817.2002.t01-1-01148.xCrossrefGoogle Scholar

  • [14] Vavilin D.V., Polynov V.A., Matorin D.N. Venediktov P. S., Sublethal concentrations of copper stimulate photosystem II photoinhibition in Chlorella pyrenoidosa, Plant Physiol., 1995, 146, 609–614 http://dx.doi.org/10.1016/S0176-1617(11)81922-XCrossrefGoogle Scholar

  • [15] Maksymiec W., Wójcik M., Krupa Z., Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate, Chemosphere, 2007, 66, 421–427 http://dx.doi.org/10.1016/j.chemosphere.2006.06.025CrossrefGoogle Scholar

  • [16] Romanowska E., Igamberdiev A., Parys E., Gardeström A., Stimulation of respiration by Pb+ ions in detached leaves and mitochondria of C3 and C4 plants, Plant Physiol., 2002, 116, 148–154 http://dx.doi.org/10.1034/j.1399-3054.2002.1160203.xCrossrefGoogle Scholar

  • [17] Hattab S., Dridi B., Chouba L., Kheder M.B., Bousetta H., Photosynthesis and growth responses of pea Pisum sativum L. under heavy metal stress, J. Environ. Sci., 2009, 21, 1552–1556 http://dx.doi.org/10.1016/S1001-0742(08)62454-7CrossrefGoogle Scholar

  • [18] Dietz, K.J., Baier, M., Krämer, U., 1999. Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants, in: Prasad, M.N.V., Hagemeyer, J., (Eds.), Heavy Metal Stress in Plants: from Molecules to Ecosystems. Berlin: Springer-Verlag, pp. 73–97. http://dx.doi.org/10.1007/978-3-662-07745-0_4CrossrefGoogle Scholar

  • [19] Hall J.L., Cellular mechanisms for heavy metal detoxification and tolerance, J. Exp. Bot., 2002, 53, 1–11 http://dx.doi.org/10.1093/jexbot/53.366.1CrossrefGoogle Scholar

  • [20] Procházková D., Wilhelmová N., 2010. Antioxidant protection during abiotic stresses, in: Pessarakli M.N.V. (Ed.), Hand Book of Plant and Crop Stress. Taylor and Francis Group, Boca Raton — London — New York, pp. 139–155. http://dx.doi.org/10.1201/b10329-9Google Scholar

  • [21] Demmig-Adams B., Carotenoids and photoprotection in plants: a role for the xanthophyll cycle, Biochim. Biophys. Acta, 1990, 1020, 1–24 http://dx.doi.org/10.1016/0005-2728(90)90088-LCrossrefGoogle Scholar

  • [22] Artetxe U., García-Plazaola J.I., Hernández A., Becerril J.M., Low light grown duckweed plants are more protected against the toxicity induced by Zn and Cd, Plant Physiol. Biochem., 2002, 40, 859–863 http://dx.doi.org/10.1016/S0981-9428(02)01446-8CrossrefGoogle Scholar

  • [23] Latowski D., Kruk J., Strzalka K., Inhibition of zeaxanthin epoxidase activity by cadmium ions in higher plants, J. Inorg. Biochem., 2005, 99, 2081–2087 http://dx.doi.org/10.1016/j.jinorgbio.2005.07.012CrossrefGoogle Scholar

  • [24] Gan S, Amasino RM., Inhibition of leaf senescence by autoregulated production of cytokinin, Science, 1995, 270, 1986–1988 http://dx.doi.org/10.1126/science.270.5244.1986CrossrefGoogle Scholar

  • [25] Zhang J., Van Toai T., Huynh L., Preiszner J., Development of flooding-tolerant Arabidopsis by autoregulated cytokinin production, Mol. Breed., 2000, 6, 135–144 http://dx.doi.org/10.1023/A:1009694029297CrossrefGoogle Scholar

  • [26] Huynh L.N., Van Toai T., Streeter J., Banowetz G., Regulation of flooding tolerance of SAG12:ipt Arabidopsis plants by cytokinin, J. Exp. Bot., 2005, 56, 1397–1407 http://dx.doi.org/10.1093/jxb/eri141CrossrefGoogle Scholar

  • [27] Xu Y., Gianfagna T., Huang B., Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species, J. Exp. Bot., 2010, 61, 3273–3289 http://dx.doi.org/10.1093/jxb/erq149CrossrefGoogle Scholar

  • [28] Merewitz E., Gianfanga T., Huang B., Effects of SAG12-ipt and HSP 18.2-ipt expression on cytokinin production, root growth and leaf senescence in creeping bentgrass exposed to drought stress, J. Am. Soc. Hortic. Sci., 2010, 135, 230–239 Google Scholar

  • [29] Procházková D., Haisel D., Pavlíková D., Schnablová R., Száková J., Vytášek R., Wilhelmová N., The effect of risk elements in soil to nitric oxide metabolism in tobacco plants, Plant, Soil Environ., 2012, 58, 435–440 http://dx.doi.org/10.1080/00380768.2012.703610CrossrefGoogle Scholar

  • [30] Procházková D., Haisel D., Wilhelmová N., Antioxidant protection during ageing and senescence in chloroplasts of tobacco with modulated life span, Cell Biochem. Funct., 2008, 26, 1–9 http://dx.doi.org/10.1002/cbf.1481CrossrefGoogle Scholar

  • [31] Žalud P., Száková J., Sysalová J., Tlustoš P., The effect of contaminated urban particulate matter on risk element contents in leafy vegetables, Centr. Eur. J. Biol., 2012, 7, 519–530 http://dx.doi.org/10.2478/s11535-012-0029-0CrossrefGoogle Scholar

  • [32] Tripathy J.N., Zhang J., Robin S., Nguyen T.T., Nguyen H.T., 2000. QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Thoer. Appl. Genet., 2000, 100, 1197–1202 http://dx.doi.org/10.1007/s001220051424CrossrefGoogle Scholar

  • [33] Roháček K., Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning and mutual relationships, Photosythetica, 2002, 40, 13–29 http://dx.doi.org/10.1023/A:1020125719386CrossrefGoogle Scholar

  • [34] Havaux M., Niyogi K.K., The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism, Proc. Natl. Acad. Sci. USA, 1999, 96, 8762–8767 http://dx.doi.org/10.1073/pnas.96.15.8762CrossrefGoogle Scholar

  • [35] Havaux M., Bonfils J.P., Lütz C., Niyogi K.K., Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin deepoxidase, Plant Physiol., 2000, 124, 273–284 http://dx.doi.org/10.1104/pp.124.1.273Google Scholar

  • [36] Havaux M., Dallösto L., Cuiné S., Giuliano G., Bassi R., The effect of zeaxanthin as the only xanthophylls on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana, J. Biol. Chem., 2004, 279, 13878–13888 http://dx.doi.org/10.1074/jbc.M311154200CrossrefGoogle Scholar

  • [37] Müller P., Li X.P., Niyogi K.K., Non-photochemical quenching. A response to excess light energy, Plant Physiol., 2001, 125, 1558–1566 http://dx.doi.org/10.1104/pp.125.4.1558CrossrefGoogle Scholar

  • [38] Baroli I., Do A.D., Yamane T., Niyogi K.K., Zeaxanthin accumulation in the absence of a functional xanthophylls cycle protects Chlamydomonas reinhardtii from photooxidative stress, Plant Cell, 2003, 15, 992–1008 http://dx.doi.org/10.1105/tpc.010405CrossrefGoogle Scholar

  • [39] Inoue K., Carotenoid hydroxylation - P450 finally!, Trends Plant Sci., 2004, 9, 515–517 http://dx.doi.org/10.1016/j.tplants.2004.09.001Google Scholar

  • [40] Bungard R.A., Ruban A.V., Hibberd J.M., Press M.C., Horton P., Scholes J.D., Unusual carotenoid composition and a new type of xanthophyll cycle in plants, Proc. Natl. Acad. Sci. USA, 1999, 96, 1135–1139 http://dx.doi.org/10.1073/pnas.96.3.1135CrossrefGoogle Scholar

  • [41] Matsubara S., Morosinotto T., Bassi R., Christian A.L., Fischer-Schliebs E., Luttge U., Orthen B., Franco A.C., Scarano F.R., Förster B., Pogson B.J., Osmond C.B., Occurrence of the luteinepoxide cycle in mistletoes of the Loranthaceae and Viscaceae, Planta, 2003, 217, 868–879 http://dx.doi.org/10.1007/s00425-003-1059-7CrossrefGoogle Scholar

  • [42] Garcia-Plazaola J.I., Matsubara S., Osmond C.B., Review: The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions, Funct. Plant. Biol., 2007, 34, 759–773 http://dx.doi.org/10.1071/FP07095CrossrefGoogle Scholar

  • [43] Kruk J., Szymańska R., Occurrence of neoxanthin and lutein epoxide cycle in parasitic Cuscuta species, Acta Biochim. Pol., 2008, 55, 183–190 Google Scholar

  • [44] Procházková D., Haisel D., Wilhelmová N., Content of carotenoids during ageing and senescence of tobacco leaves with genetically modulated lifespan, Photosynthetica, 2009, 47, 409–414 http://dx.doi.org/10.1007/s11099-009-0062-zCrossrefGoogle Scholar

  • [45] Dall’Osto L., Cazzaniga S., North H., Marion-Poll A., Bassi R., The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress, Plant Cell, 2007, 19, 1048–1064 http://dx.doi.org/10.1105/tpc.106.049114Google Scholar

About the article

Published Online: 2014-04-30

Published in Print: 2014-07-01


Citation Information: Open Life Sciences, Volume 9, Issue 7, Pages 678–685, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-014-0304-3.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in