Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 9, Issue 7

Issues

Volume 10 (2015)

Flow cytometry analysis of coxsackievirus B receptors expression in human CaCo-2 cells

Samira Riabi
  • Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives (LR99-ES 27), Faculté de Pharmacie de Monastir, Monastir, Tunisie
  • Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP, EA 3064), Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42023, Saint-Etienne cedex 02, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rafik Harrath
  • Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives (LR99-ES 27), Faculté de Pharmacie de Monastir, Monastir, Tunisie
  • Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP, EA 3064), Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42023, Saint-Etienne cedex 02, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Imed Gaâloul
  • Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives (LR99-ES 27), Faculté de Pharmacie de Monastir, Monastir, Tunisie
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hind Hamzeh-Cognasse
  • Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP, EA 3064), Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42023, Saint-Etienne cedex 02, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olivier Délezay
  • Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP, EA 3064), Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42023, Saint-Etienne cedex 02, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mahjoub Aouni
  • Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives (LR99-ES 27), Faculté de Pharmacie de Monastir, Monastir, Tunisie
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bruno Pozzetto
  • Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP, EA 3064), Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42023, Saint-Etienne cedex 02, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-30 | DOI: https://doi.org/10.2478/s11535-014-0305-2

Abstract

A subset of coxsackieviruses B (CV-B) is able to initiate intestinal infection via the attachment to two cell surface proteins, decayaccelerating factor (DAF) and coxsackie adenovirus receptor (CAR). The aim of the present study was to investigate the expression pattern of these receptors in the polarized CaCo-2 cell line using flow cytometry. The expression of CAR-specific mRNA and proteins was analyzed by reverse transcriptase polymerase chain reaction and western blotting, respectively. Flow cytometry analysis was used to study the surface expression patterns of CAR and DAF. CAR and DAF were well detected at the surface of CaCo-2 cells by flow cytometry. Despite the fact that CAR was susceptible to the action of trypsin, a few amounts of the latter enzyme and a precise dilution did not impair its correct detection by flow cytometry. This technique was used to demonstrate that the density of cells did not influence the expression of CAR at the cell surface. CaCo-2 cells express high levels of CAR and DAF at their surface. Flow cytometry, if used adequately, represents a helpful tool for the study of the interactions between these cells and various viral targets.

Keywords: CaCo-2 cell line; Coxsackievirus and adenovirus receptor; Decay accelerating factor; Trypsin; Flow cytometry; Coxsackievirus B

  • [1] Greber U.F., Gastaldelli M., Junctional gating: the Achilles’ heel of epithelial cells in pathogen infection, Cell Host & Microbe., 2007, 2, 143–146 http://dx.doi.org/10.1016/j.chom.2007.08.004CrossrefGoogle Scholar

  • [2] Mapoles J.E., Krah D.L., Crowell R.L., Purification of a HeLa cell receptor protein for group B coxsackieviruses, J.Virol., 1985, 55, 560–566 Google Scholar

  • [3] Bergelson J.M., Cunningham J.A., Droguett G., Kurt-Jones E.A., Krithivas A., Hong, J.S., et al., Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5, Science., 1997, 275, 1320–1323 http://dx.doi.org/10.1126/science.275.5304.1320CrossrefGoogle Scholar

  • [4] Tomko R.P., Xu R., Philipson L., HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses, Proc. Natl. Acad. Sci. U S A., 1997, 94, 3352–3356 http://dx.doi.org/10.1073/pnas.94.7.3352CrossrefGoogle Scholar

  • [5] Selinka H.C., Huber M., Pasch A., Klingel K., Aepinus C., Kandolf R., Coxsackie B virus and its interaction with permissive host cells, Clin. Diagn. Virol., 1998, 9, 115–123. http://dx.doi.org/10.1016/S0928-0197(98)00010-5CrossrefGoogle Scholar

  • [6] Huang Y., Hogle J.M., Chow M., Is the 135S Poliovirus Particle an Intermediate during Cell Entry? J. Virol., 2000, 74, 8757–8761. http://dx.doi.org/10.1128/JVI.74.18.8757-8761.2000CrossrefGoogle Scholar

  • [7] Carson S.D., Chapman N.M., Tracy S.M., Purification of the putative coxsackievirus B receptor from HeLa cells, Biochem. Biophys. Res. Commun., 1997, 233, 325–328 http://dx.doi.org/10.1006/bbrc.1997.6449CrossrefGoogle Scholar

  • [8] Aurrand-Lions M., Johnson-Leger C., Wong C., Du Pasquier L., Imhof B.A., Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members, Blood., 2001, 98, 3699–3707 http://dx.doi.org/10.1182/blood.V98.13.3699CrossrefGoogle Scholar

  • [9] Cohen C.J., Shieh J.T., Pickles R.J., Okegawa T., Hsieh J.T., Bergelson J.M., The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction, Proc. Natl. Acad. Sci. U S A., 2001, 98, 15191–15196 http://dx.doi.org/10.1073/pnas.261452898CrossrefGoogle Scholar

  • [10] Coyne C.B., Bergelson J.M., CAR. A virus receptor within the tight junction. Adv. Drug. Deliver. Rev., 2005, 57, 869–882. http://dx.doi.org/10.1016/j.addr.2005.01.007CrossrefGoogle Scholar

  • [11] Hafenstein S., Bowman V.D., Chipman P.R., Bator Kelly C.M., Lin F., Medof M.E., Rossmann M.G., Interaction of Decay-Accelerating Factor with Coxsackievirus B3, J. Virol., 2007, 81(23), 12927–12935. http://dx.doi.org/10.1128/JVI.00931-07CrossrefGoogle Scholar

  • [12] Williams P., Chaudhry Y., Goodfellow I.G., Billington J., Powell R., Spiller O.B., et al, Mapping CD55 function. The structure of two pathogenbinding domains at 1.7 A. J, Biol. Chem., 2003, 278, 10691–10696 http://dx.doi.org/10.1074/jbc.M212561200CrossrefGoogle Scholar

  • [13] Koretz K., Brüderlein S., Henne C., Möller P., Decay-accelerating factor (DAF, CD55) in normal colorectal mucosa, adenomas and carcinomas, Brit. J. Cancer., 1992, 66, 810–814 http://dx.doi.org/10.1038/bjc.1992.365CrossrefGoogle Scholar

  • [14] Shieh J.T., Bergelson J.M., Interaction with decayaccelerating factor facilitates coxsackievirus B infection of polarized epithelial cells, J. Virol., 2002, 76, 9474–9480. http://dx.doi.org/10.1128/JVI.76.18.9474-9480.2002CrossrefGoogle Scholar

  • [15] Shafren D.R., Bates R.C., Agrez M.V., Herd R.L., Burns G.F., Barry R.D., Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment, J. Virol., 1995, 69, 3873–3877 Google Scholar

  • [16] Coyne C.B., Bergelson J.M., Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions, Cell., 2006, 124, 119–31 http://dx.doi.org/10.1016/j.cell.2005.10.035CrossrefGoogle Scholar

  • [17] Grasset E., Pinto M., Dussaulx E., Zweibaum A., Desjeux J.F., Epithelial properties of human colonic carcinoma cell line Caco-2: electrical parameters, Am. J. Physiol., 1984, 247, C260–267 Google Scholar

  • [18] Coyne C.B., Shen L., Turner J.R., Bergelson J.M., Coxsackievirus entry across epithelial tight junctions requires occludin and the small GTPases Rab34 and Rab5, Cell Host & Microbe., 2007, 2, 181–192 http://dx.doi.org/10.1016/j.chom.2007.07.003CrossrefGoogle Scholar

  • [19] Carson S.D., Limited proteolysis of the coxsackievirus and adenovirus receptor (CAR) on HeLa cells exposed to trypsin, FEBS Letter., 2000, 484, 149–152 http://dx.doi.org/10.1016/S0014-5793(00)02144-XCrossrefGoogle Scholar

  • [20] Chomczynski P., Sacchi N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chlorophorm extraction, Anal. Biochem., 1987, 162, 156–159 http://dx.doi.org/10.1016/0003-2697(87)90021-2CrossrefGoogle Scholar

  • [21] Boulanger P., Philipson L., Membrane components interacting with non-enveloped viruses, In: Lonberg-Holm K., Philipson L. (Eds.), Virus receptors, Part 2, Animal Viruses., Chapman & Hall, New York, USA, 1981, pp. 117–139 http://dx.doi.org/10.1007/978-94-011-8022-1_6CrossrefGoogle Scholar

  • [22] Freimuth P., Philipson L., Carson S.D., The coxsackievirus and adenovirus receptor, Curr Top Microbiol., 2008, 323, 67–87 Google Scholar

  • [23] Mbida A.D., Pozzetto B., Sabido O., Akono Y., Grattard F., Habib M., et al., Competition binding studies with biotinylated echovirus 11 in cytofluorimetry analysis, J. Virol. Methods., 1991, 35, 169–176 http://dx.doi.org/10.1016/0166-0934(91)90132-JCrossrefGoogle Scholar

  • [24] Martino T.A., Petric M., Brown M., Aitken K., Gauntt C.J., Richardson C.D., et al., Cardiovirulent coxsackieviruses and the decay-accelerating factor (CD55) receptor, Virology., 1998, 244, 302–314 http://dx.doi.org/10.1006/viro.1998.9122CrossrefGoogle Scholar

  • [25] Triantafilou M., Wilson K.M., Triantafilou K., Identification of Echovirus 1 and coxsackievirus A9 receptor molecules via a novel flow cytometric quantification method, Cytometry., 2001, 43, 279–289 http://dx.doi.org/10.1002/1097-0320(20010401)43:4<279::AID-CYTO1060>3.0.CO;2-BCrossrefGoogle Scholar

  • [26] Zhang N.H., Song L.B., Wu X.J., Li R.P., Zeng M.S., Zhu X.F., et al., Proteasome inhibitor MG-132 modifies coxsackie and adenovirus receptor expression in colon cancer cell line lovo, Cell Cycle., 2008, 7, 925–933 http://dx.doi.org/10.4161/cc.7.7.5621CrossrefGoogle Scholar

  • [27] Honda T., Saitoh H., Masuko M., Katagiri-Abe T., Tominaga K., Kozakai I., et al., The coxsackievirusadenovirus receptor protein as a cell adhesion molecule in the developing mouse brain, Mol. Brain. Res., 2000, 77, 19–28 http://dx.doi.org/10.1016/S0169-328X(00)00036-XCrossrefGoogle Scholar

  • [28] Shafren D.R., Williams D.T., Barry R.D., A decayaccelerating factor-binding strain of coxsackievirus B3 requires the coxsackievirus-adenovirus receptor protein to mediate lytic infection of rhabdomyosarcoma cells, J. Virol., 1997, 71, 9844–9848 Google Scholar

  • [29] Carson S.D., Hobbs J.T., Tracy S.M., Chapman N.M., Expression of the coxsackievirus and adenovirus receptor in cultured human umbilical vein endothelial cells: regulation in response to cell density, J. Virol., 1999, 73, 7077–7079 Google Scholar

  • [30] Vincent T., Pettersson R.F., Crystal R.G., Leopold P.L., Cytokine-mediated downregulation of coxsackievirus-adenovirus receptor in endothelial cells, J. Virol., 2004, 78, 8047–8058. http://dx.doi.org/10.1128/JVI.78.15.8047-8058.2004CrossrefGoogle Scholar

  • [31] Fanning A.S., Mitic L.L., Anderson J.M., Transmembrane proteins in the tight junction barrier, J. Am. Soc. Nephrol., 1999; 10, 1337–1345. Google Scholar

  • [32] Philipson L., Pettersson R.F., The coxsackieadenovirus receptor-a new receptor in the immunoglobulin family involved in cell adhesion, Curr. Top. Microbiol. Immunol., 2004, 273, 87–111. Google Scholar

  • [33] Bainbridge W.B., Smith A.J., Barker S.S., Robbie S., Henderson R., Balaggan K., Viswanathan A., Holder G.E., Stockman A., Tyler N., Petersen-Jones S., Bhattacharya S.S., Thrasher A.J., M.R.C.P., F.R.C.P., Fitzke F.W., Carter B.J., Rubin G.S., Moore A.T., Ali R. R., Effect of Gene Therapy on Visual Function in Leber’s Congenital Amaurosis, N. Engl. J. Med., 2008, 358, 2231–2239. http://dx.doi.org/10.1056/NEJMoa0802268CrossrefGoogle Scholar

About the article

Published Online: 2014-04-30

Published in Print: 2014-07-01


Citation Information: Open Life Sciences, Volume 9, Issue 7, Pages 699–707, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-014-0305-2.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in