Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year

IMPACT FACTOR 2017: 0.764
5-year IMPACT FACTOR: 0.787

CiteScore 2017: 0.88

SCImago Journal Rank (SJR) 2017: 0.271
Source Normalized Impact per Paper (SNIP) 2017: 0.545

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 9, Issue 9


Volume 10 (2015)

Phenolic production and antioxidant properties of some Macedonian medicinal plants

Oliver Tusevski
  • Department of Plant Physiology, Institute of Biology, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril and Methodius”, P.O. Box 162, 1000, Skopje, Macedonia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aneta Kostovska
  • Biology Students Research Society (BSRS), Institute of Biology, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril and Methodius”, P.O. Box 162, 1000, Skopje, Macedonia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ana Iloska
  • Biology Students Research Society (BSRS), Institute of Biology, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril and Methodius”, P.O. Box 162, 1000, Skopje, Macedonia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ljubica Trajkovska
  • Biology Students Research Society (BSRS), Institute of Biology, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril and Methodius”, P.O. Box 162, 1000, Skopje, Macedonia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sonja Simic
  • Department of Plant Physiology, Institute of Biology, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril and Methodius”, P.O. Box 162, 1000, Skopje, Macedonia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-08-15 | DOI: https://doi.org/10.2478/s11535-014-0322-1


Investigations have been made to study the production of phenolic compounds (total phenolics, flavonoids and phenylpropanoids) and total antioxidant capacity in 27 Macedonian traditional medicinal plants to improve its potential as a source of natural antioxidants. Antioxidant potential of plant extracts was analyzed by five different assays: cupric reducing antioxidant capacity (CUPRAC), phosphomolybdenum method (PM), reducing power (RP), 2,2-diphenyl-1-picrylhydrazyl (DPPH·) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS·+) radical scavenging activity. Origanum vulgare extract consistently exhibited the highest content of phenolic compounds and the strongest antioxidant capacity based on the tests performed, and can be proposed as a promising source of natural antioxidants. Melissa officinalis and Salvia ringens were also identified as valuable sources of antioxidant compounds. A positive linear correlation between antioxidant activity and total phenolics, flavonoids and phenylpropanoids indicates that these compounds are likely to be the main antioxidants contributing to the observed activities of evaluated plants. These findings suggest that the medicinal plants studied in this paper are good sources of bioactive compounds for the food and pharmaceutical industries.

Keywords: Phenolics; Flavonoids; Phenylpropanoids; Antioxidant activity; Scavenging capacity; Medicinal plants

  • [1] Mittler R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, 7, 405–410 http://dx.doi.org/10.1016/S1360-1385(02)02312-9CrossrefGoogle Scholar

  • [2] Valko M., Leibfritz D., Moncol J., Cronin M.T.D., Mazur M., Telser J., Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol., 2007, 39, 44–84 http://dx.doi.org/10.1016/j.biocel.2006.07.001CrossrefGoogle Scholar

  • [3] Halliwell B., Oxidative stress and cancer: have we moved forward? Biochem. J., 2007, 401, 1–11 http://dx.doi.org/10.1042/BJ20061131CrossrefGoogle Scholar

  • [4] Tiwari A.K., Imbalance in antioxidant defense and human diseases: Multiple approach of natural antioxidant therapy, Curr. Sci., 2001, 81, 1179–1187 Google Scholar

  • [5] Carlsen M., Halvorsen B., Holte K., Bøhn S., Dragland S., Sampson L., Willey C., Senoo H., Umezono Y., Sanada C., Barikmo I., Berhe N., Willett W., Phillips K., Jacobs D.R., Blomhoff R., The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide, Nutr. J., 2010, 9, 3–7 http://dx.doi.org/10.1186/1475-2891-9-3CrossrefGoogle Scholar

  • [6] Oktay M., Gülçin İ., Küfrevioğlu Ö.İ., Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts, LWT-Food Sci. Technol., 2003, 36, 263–271 http://dx.doi.org/10.1016/S0023-6438(02)00226-8CrossrefGoogle Scholar

  • [7] Löliger J., The use of antioxidants in foods, In: Aruoma O.I., Halliwell B. (Ed.), Free radicals and food additives, Taylor & Francis, London, 1991 Google Scholar

  • [8] Botterweck A.A.M., Verhagen H., Goldbohm R.A., Kleinjans J., van den Brandt P.A., Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in the Netherlands cohort study, Food Chem. Toxicol., 2000, 38, 599–605 http://dx.doi.org/10.1016/S0278-6915(00)00042-9CrossrefGoogle Scholar

  • [9] Rice-Evans C.A., Miller N.J., Paganga G., Antioxidant properties of phenolic compounds, Trends Plant Sci., 1997, 2, 152–159 http://dx.doi.org/10.1016/S1360-1385(97)01018-2CrossrefGoogle Scholar

  • [10] Velioglu Y.S., Mazza G., Gao L., Oomah B.D., Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products, J. Agric. Food Chem., 1998, 46, 4113–4117 http://dx.doi.org/10.1021/jf9801973CrossrefGoogle Scholar

  • [11] Singleton V.L., Rossi J.A., Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, Am. J. Enol. Vitic., 1965, 16, 144–158 Google Scholar

  • [12] Makris D.P., Boskou G., Andrikopoulos N.K., Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts, J. Food Comp. Anal., 2007, 20, 125–132 http://dx.doi.org/10.1016/j.jfca.2006.04.010CrossrefGoogle Scholar

  • [13] Fraisse D., Carnat A., Viala D., Pradel P., Besle J., Coulon J., Felgines C., Lamaison J., Polyphenolic composition of a permanent pasture: variations related to the period of harvesting, J. Sci. Food Agric., 2007, 87, 2427–2435 http://dx.doi.org/10.1002/jsfa.2918CrossrefGoogle Scholar

  • [14] Oyaizu M., Studies on product of browning reaction prepared from glucose amine, Jpn. J. Nutr., 1986, 44, 307–315 http://dx.doi.org/10.5264/eiyogakuzashi.44.307CrossrefGoogle Scholar

  • [15] Prieto P., Pineda M., Aguilar M., Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E, Anal. Biochem., 1999, 269, 337–341 http://dx.doi.org/10.1006/abio.1999.4019CrossrefGoogle Scholar

  • [16] Apak R., Güçlü K., Özyürek M., Karademir S.E., Novel total antioxidant capacity index for dietary polyphenols, vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, J. Agric. Food Chem., 2004, 52, 7970–7981 http://dx.doi.org/10.1021/jf048741xCrossrefGoogle Scholar

  • [17] Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C., Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Bio. Med., 1999, 26, 1231–1237 http://dx.doi.org/10.1016/S0891-5849(98)00315-3CrossrefGoogle Scholar

  • [18] Brand-Williams W., Cuvelier M.E., Berset C., Use of a free radical method to evaluate antioxidant activity, LWT-Food Sci. Technol., 1995, 28, 25–30 http://dx.doi.org/10.1016/S0023-6438(95)80008-5CrossrefGoogle Scholar

  • [19] Shan B., Cai Y.Z., Sun M., Corke H., Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents, J. Agric. Food Chem., 2005, 53, 7749–7759 http://dx.doi.org/10.1021/jf051513yCrossrefGoogle Scholar

  • [20] Surveswaran S., Cai Y., Corke H., Sun M., Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants, Food Chem., 2007, 102, 938–953 http://dx.doi.org/10.1016/j.foodchem.2006.06.033CrossrefGoogle Scholar

  • [21] Kirca A., Arslan E., Antioxidant capacity and total phenolic content of selected plants from Turkey, Int. J. Food Sci. Technol., 2008, 43, 2038–2046 http://dx.doi.org/10.1111/j.1365-2621.2008.01818.xCrossrefGoogle Scholar

  • [22] Sengul M., Ercisli S., Yildiz H., Gungor N., Kavaz A., Çetin B., Antioxidant, antimicrobial activity and total phenolic content within the aerial parts of Artemisia absinthum, Artemisia santonicum and Saponaria officinalis, Iran. J. Pharm. Res., 2011, 10, 49–56 Google Scholar

  • [23] Godevac D., Zdunic G., Savikin K., Vajs V., Menkovic N., Antioxidant activity of nine Fabaceae species growing in Serbia and Montenegro, Fitoterapia, 2008, 79, 185–187 http://dx.doi.org/10.1016/j.fitote.2007.10.001CrossrefGoogle Scholar

  • [24] Kim D-O, Lee C.Y., Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship, Crit. Rev. Food Sci. Nutr. 2004, 44, 253–273 http://dx.doi.org/10.1080/10408690490464960CrossrefGoogle Scholar

  • [25] Satue-Gracia M.T., Heinonen M., Frankel E.N., Anthocyanins as antioxidants on human lowdensity lipoprotein and lecithin-liposome systems, J. Agric. Food Chem., 1997, 45, 3362–3367 http://dx.doi.org/10.1021/jf970234aCrossrefGoogle Scholar

  • [26] Patel V.R., Patel P.R., Kajal S.S., Antioxidant activity of some selected medicinal plants in western region of India, Adv. Biol. Res., 2010, 4, 23–26 Google Scholar

  • [27] Bouayed J., Khosro P., Rammal H., Dicko A., Desor F., Younos C., Soulimani R., Comparative evaluation of the antioxidant potential of some Iranian medicinal plants, Food Chem., 2007, 104, 364–368 http://dx.doi.org/10.1016/j.foodchem.2006.11.069CrossrefGoogle Scholar

  • [28] Zhang L., Ravipati A.S., Koyyalamudi S.R., Jeong S.C., Reddy N., Smith P.T., Bartlett J., Shanmugam K., Münch D.G., Wu M.J., Antioxidant and antiinflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds, J. Agric. Food Chem., 2011, 59, 12361–12367 http://dx.doi.org/10.1021/jf203146eCrossrefGoogle Scholar

  • [29] Miliauskas G., Venskutonis P.R., Van Beek T.A., Screening of radical scavenging activity of some medicinal and aromatic plant extracts, Food Chem., 2004, 85, 231–237 http://dx.doi.org/10.1016/j.foodchem.2003.05.007CrossrefGoogle Scholar

  • [30] Jiang P., Burczynski F., Campbell C., Pierce G., Austria J.A., Briggs C.J., Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation, Food Res. Int., 2007, 40, 356–364 http://dx.doi.org/10.1016/j.foodres.2006.10.009CrossrefGoogle Scholar

  • [31] Ghasemzadeh A., Jaafar H.Z.E., Rahmat A., Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe), Molecules, 2010, 15, 4324–4333 http://dx.doi.org/10.3390/molecules15064324CrossrefGoogle Scholar

  • [32] Dorman H.J.D., Kosar M., Kahlos K., Holm Y., Hiltunen R., Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars, J. Agric. Food Chem., 2003, 51, 4563–4569 http://dx.doi.org/10.1021/jf034108kCrossrefGoogle Scholar

  • [33] Matkowsky A., Piotrowska M., Antioxidant and free radical scavenging activities of some medicinal plants from the Lamiaceae, Fitoterapia, 2006, 77, 346–353 http://dx.doi.org/10.1016/j.fitote.2006.04.004CrossrefGoogle Scholar

  • [34] Cao G.H., Prior R.L., Comparison of different analytical methods for assessing total antioxidant capacity of human serum, Clin. Chem., 1999, 44, 1309–1315 Google Scholar

  • [35] Huang D., Ou B., Prior R.L., The Chemistry Behind Antioxidant Capacity Assays, J. Agric. Food Chem., 2005, 53, 1841–1856 http://dx.doi.org/10.1021/jf030723cCrossrefGoogle Scholar

  • [36] Gordon M.H., The mechanism of antioxidant action in vitro, In: Hudson B.J.F. (Ed.), Food antioxidants, Elsevier, London, 1990 Google Scholar

  • [37] Shimada K., Fujikawa K., Yahara K., Nakamura T., Anti-oxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion, J. Agric. Food Chem., 1992, 40, 945–948 http://dx.doi.org/10.1021/jf00018a005CrossrefGoogle Scholar

  • [38] Chevolleau S., Mallet J.F., Ucciani E., Gamisans J., Gruber M., Antioxidant activity in leaves of some mediterranean plants. J. Am. Oils Chem. Soc., 1992, 69, 1269–1271 http://dx.doi.org/10.1007/BF02637699CrossrefGoogle Scholar

  • [39] Kikuzaki H., Nakatani N., Structure of a new antioxidative phenolic acid from oregano (Origanum vulgare L), Agric. Biol. Chem., 1989, 53, 519–524 http://dx.doi.org/10.1271/bbb1961.53.519CrossrefGoogle Scholar

  • [40] Zheng W., Wang S.Y., Antioxidant activity and phenolic compounds in selected herbs, J. Agric. Food Chem., 2001, 49, 5165–5170 http://dx.doi.org/10.1021/jf010697nCrossrefGoogle Scholar

  • [41] Chun S., Vattem D.A., Lin Y., Shetty K., Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori, Process Biochem., 2005, 40, 809–816 http://dx.doi.org/10.1016/j.procbio.2004.02.018CrossrefGoogle Scholar

  • [42] Nićiforović N., Mihailović V., Masković P., Solujić S., Stojković A., Pavlović Muratspahić D., Antioxidant activity of selected plant species; potential new sources of natural antioxidants, Food Chem. Toxicol., 2010, 48, 3125–3130 http://dx.doi.org/10.1016/j.fct.2010.08.007CrossrefGoogle Scholar

  • [43] Marwah R.G., Fatope M.O., Al Mahrooqi R., Varma G.B., Al Burtamani S., Antioxidant capacity of some edible and wound healing plants in Oman, Food Chem., 2007, 101, 465–470 http://dx.doi.org/10.1016/j.foodchem.2006.02.001CrossrefGoogle Scholar

  • [44] Apak R., Güçlü K., Özyürek M., Karademir S.E., Erça E., The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas, Int. J. Food Sci. Nut., 2006, 57, 292–304 http://dx.doi.org/10.1080/09637480600798132CrossrefGoogle Scholar

  • [45] Niki E., Antioxidants in relation to lipid peroxidation, Chem. Phys. Lipids, 1987, 44, 227–253 CrossrefGoogle Scholar

  • [46] Lagouri V., Boskou D., Nutrient antioxidants in oregano, Int. J. Food Sci. Nutr., 1996, 47, 493–497 http://dx.doi.org/10.3109/09637489609031878CrossrefGoogle Scholar

  • [47] Cervato G., Carabelli M., Gervasio S., Cittera A., Cazzola R., Cestaro B., Antioxidant properties of oregano (Origanum vulgare) leaf extracts, J. Food Biochem., 2000, 24, 453–465 http://dx.doi.org/10.1111/j.1745-4514.2000.tb00715.xCrossrefGoogle Scholar

  • [48] Tagashira M., Ohtake Y., A new antioxidant 1.3-benzodioxole from Melissa officinalis. Planta Med., 1998, 64, 555–558 http://dx.doi.org/10.1055/s-2006-957513CrossrefGoogle Scholar

  • [49] Hohmann J., Zupko I., Redei D., Csányi M., Falkay G., Máthé I., Janicsák G., Protective effects of the aerial parts of Salvia officinalis, Melissa officinalis and Lavandula angustifolia and their constituents against enzyme-dependent and enzymeindependent lipid peroxidation, Planta Med., 1999, 65, 576–578 http://dx.doi.org/10.1055/s-2006-960830CrossrefGoogle Scholar

  • [50] Correia H., Gonzalez-Paramas A., Amaral M.T., Santos-Buelga C., Batista M.T., Polyphenolic profile characterization of Agrimonia eupatoria L. by HPLC with different detection devices, Biomed. Chromatogr., 2006, 20, 88–94 http://dx.doi.org/10.1002/bmc.533CrossrefGoogle Scholar

  • [51] Correia H.S., Batista M.T., Dinis T.C., The activity of an extract and fraction of Agrimonia eupatoria L. against reactive species, Biofactors, 2007, 29, 91–104 http://dx.doi.org/10.1002/biof.552029209CrossrefGoogle Scholar

  • [52] Demo A., Petrakis C., Kefalas P., Boskou D., Nutrient antioxidants in some herbs and Mediterranean plant leaves, Food Res. Int., 1998, 31, 351–354 http://dx.doi.org/10.1016/S0963-9969(98)00086-6CrossrefGoogle Scholar

  • [53] Şenol F.S., Orhan I., Celep F., Kahraman A., Doğan M., Yilmaz G., Şener B., Survey of 55 Turkish Salvia taxa for their acetylcholinesterase inhibitory and antioxidant activities, Food Chem., 2010, 120, 34–43 http://dx.doi.org/10.1016/j.foodchem.2009.09.066CrossrefGoogle Scholar

  • [54] Bozan B., Ozturk N., Kosar M., Tunalier Z., Baser K.H.C., Antioxidant and free radical scavenging activities of eight Salvia species, Chem. Nat. Compd., 2002, 38, 198–200 http://dx.doi.org/10.1023/A:1019664720443CrossrefGoogle Scholar

  • [55] Wojdyıo A., Oszmiański J., Czemerys R., Antioxidant activity and phenolic compounds in 32 selected herbs, Food Chem., 2007, 105, 940–949 http://dx.doi.org/10.1016/j.foodchem.2007.04.038CrossrefGoogle Scholar

  • [56] Kähkönen M.P., Hopia A.I., Heinonen M., Berry phenolics and their antioxidant activity, J. Agric. Food Chem., 2001, 49, 4076–4082 http://dx.doi.org/10.1021/jf010152tCrossrefGoogle Scholar

  • [57] Cai Y.Z., Luo Q., Sun M., Corke H., Antioxidant activity and phenolic compounds of 112 Chinese medicinal plants associated with anticancer, Life Sci., 2004, 74, 2157–2184 http://dx.doi.org/10.1016/j.lfs.2003.09.047CrossrefGoogle Scholar

  • [58] Hinneburg I., Dorman H.J.D., Hiltunen R., Antioxidant activities of extracts from selected culinary herbs and spices, Food Chem., 2006, 97, 122–129 http://dx.doi.org/10.1016/j.foodchem.2005.03.028CrossrefGoogle Scholar

  • [59] Dudonné S., Vitrac X., Coutière P., Woillez M., Mérillon J.M., Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays, J. Agric. Food Chem., 2009, 57, 1768–1774 http://dx.doi.org/10.1021/jf803011rCrossrefGoogle Scholar

  • [60] Shahidi F., Janitha P.K., Wanasundara P.D., Phenolic antioxidants, Crit. Rev. Food Sci. Nutr., 1992, 32, 67–103 http://dx.doi.org/10.1080/10408399209527581CrossrefGoogle Scholar

  • [61] Mai T.T., Fumie N., Chuyen N.V., Antioxidant activities and hypolipidemic effects of an aqueous extract from flower buds of Cleistocalyx operculatus (Roxb.) merr. and perry, J. Food Biochem., 2009, 33, 790–807 http://dx.doi.org/10.1111/j.1745-4514.2009.00251.xCrossrefGoogle Scholar

About the article

Published Online: 2014-08-15

Published in Print: 2014-09-01

Citation Information: Open Life Sciences, Volume 9, Issue 9, Pages 888–900, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-014-0322-1.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ilioara Oniga, Cristina Pușcaș, Radu Silaghi-Dumitrescu, Neli-Kinga Olah, Bogdan Sevastre, Raluca Marica, Ioan Marcus, Alexandra Sevastre-Berghian, Daniela Benedec, Carmen Pop, and Daniela Hanganu
Molecules, 2018, Volume 23, Number 8, Page 2077
Ahmet Altay, Sebnem Degirmenci, Mustafa Korkmaz, Murat Cankaya, and Ekrem Koksal
Journal of Food Measurement and Characterization, 2018
Manel Ouerfelli, Leila Bettaieb Ben Kâab, and María Almajano
Molecules, 2018, Volume 23, Number 7, Page 1657
Mengpei Liu, Lihua Zhang, Suk Ser, Jonathan Cumming, and Kang-Mo Ku
Molecules, 2018, Volume 23, Number 4, Page 900
Bronislava Butkutė, Audronė Dagilytė, Raimondas Benetis, Audrius Padarauskas, Jurgita Cesevičienė, Vilma Olšauskaitė, and Nijolė Lemežienė
BioMed Research International, 2018, Volume 2018, Page 1
Elhamalsadat Shekarforoush, Ana Mendes, Vanessa Baj, Sophie Beeren, and Ioannis Chronakis
Molecules, 2017, Volume 22, Number 10, Page 1708
Hatice Tohma, Ekrem Köksal, Ömer Kılıç, Yusuf Alan, Mustafa Yılmaz, İlhami Gülçin, Ercan Bursal, and Saleh Alwasel
Antioxidants, 2016, Volume 5, Number 4, Page 38

Comments (0)

Please log in or register to comment.
Log in