Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 10, Issue 1

Issues

Volume 10 (2015)

Genetic and non-genetic determinants of aggression in combat sports

Piotr Gronek / Dariusz Wieliński
  • Department of Anthropology and Biometrics, University School of Physical Education, Poznań, 61-871, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joanna Gronek
Published Online: 2014-10-02 | DOI: https://doi.org/10.1515/biol-2015-0002

Abstract

Human aggression/impulsivity-related traits are influenced by complex genetic and non-genetic factors. The aggression/anxiety relationship is controlled by highly conserved brain regions including the amygdala, hypothalamus and periaqueductal gray of the midbrain, which is responsible for neural circuits triggering defensive, aggressive, or avoidant behavioral models. The social behavior network consists of the medial amygdala, medial hypothalamus and periaqueductal gray, and it positively modulates reactive aggression. An important role in the incidence of aggressive behavior is played by secreted factors such as testosterone, glucocorticoids, pheromones, as well as by expression of genes such as neuroligin-2, monoamine oxidase A, serotonin transporters, etc. The authors deliberate whether aggression in sport is advantageous (or even indispensable), or to what extent it can hamper attainment of sport success. Methods of reducing and inhibiting expression of aggression in athletes are indicated.

Keywords: combat sports; aggression; association; impulsivity; polymorphism; genes

References

  • [1] Cięszczyk P., Maciejewska A., Sawczuk M., Ficek K., Eider J., Jascaniene N., The angiotensin converting enzyme gene I/D polymorphism in elite Polish and Lithuanian judo players. Biol. Sport., 2010, 27, 119-122 CrossrefGoogle Scholar

  • [2] Maciejewska-Karłowska A., Polymorphisms in the Peroxisome Proliferator-Activated Receptor genes: relevance for athletic performance. Trends Sport Sci., 2013, 1, 5-15 Google Scholar

  • [3] Sawczuk M., Maciejewska-Karłowska A., Cięszczyk P., A single nucleotide polymorphism rs553668 in ADRA2A gene and Polish elite endurance athlete status. Trends Sport Sci., 2013, 1, 30-35 Google Scholar

  • [4] Stępień-Słodkowska M., Ficek K., Eider J., Leońska-Duniec A., Maciejewska-Karłowska A., Sawczuk M., et al., THE +1245G/T polymorphisms in the collagen type I alpha 1 (COL1A1) gene in polish skiers with anterior cruciate ligament injury. Biol. Sport., 2013, 30, 57-60 Google Scholar

  • [5] Yu D., Yu Y., Wilde B., Shan G., Biomechanical characteristics of the axe kick in tae kwon-do. Arch. Budo., 2012, 8, 213-218 CrossrefGoogle Scholar

  • [6] Yavus H.U., Oktem F., The relationship between depression, anxiety and visual reaction times in athletes. Biol. Sport., 2012, 29, 205-209 CrossrefGoogle Scholar

  • [7] Kolayis H., Using EEG biofeedback in karate: The relationship among anxiety, motivation and brain waves. Arch. Budo., 2012, 8, 13-18 CrossrefGoogle Scholar

  • [8] Akert R.M., Aronson E., Wilson T.D., Social Psychology (7th ed.). Upper saddle river, NJ: Prentice Hall, 2010. Google Scholar

  • [9] Nelson R.J., Chiavegatto S., Aggression in knockout mice. ILAR J., 2000. 41, 153–162. CrossrefGoogle Scholar

  • [10] Blanchard R.J., Wall P.M., Blanchard D.C., Problems in the study of rodent aggression. Horm. Behav., 2003, 44, 161–170 CrossrefGoogle Scholar

  • [11] Robinson M.D., Wilkowski B.N., Personality processes in anger and reactive aggression: an introduction. J. Pers., 2010, 78, 1–8 CrossrefGoogle Scholar

  • [12] Blair R.J.R., Peschardt K.S., Budhani S., Mitchell D.G.V., Pine D.S., The development of psychopathy. J. Child Psychol. Psychiatry., 2006, 47, 262–275 CrossrefGoogle Scholar

  • [13] McElliskem J.E., Affective and predatory violence: a bimodal classification system of human aggression and violence. Aggress. Violent Beh., 2004, 10, 1–30 CrossrefGoogle Scholar

  • [14] Bushman, B.J., Anderson C.A., Is it time to pull the plug on the hostile versus instrumental aggression dichotomy? Psychol. Rev., 2001, 108, 273–279 CrossrefGoogle Scholar

  • [15] Snow S., Violence and aggression in sports: an in-depth look (Part One). Bleacher Report, 2010, March 23 Google Scholar

  • [16] Durrant R., Collective violence: An evolutionary perspective. Aggress. Violent Beh., 2011, 16, 428–436 CrossrefGoogle Scholar

  • [17] Eagly A., Steffen V., Gender and aggressive behavior: a meta-analytic review of the social psychological literature. Psychol. Bull., 1986, 106, 323 – 325 Google Scholar

  • [18] Hess N., Hagen E., Sex differences in indirect aggression psychological evidence from young adults. Evol. Hum. Behav., 2006, 27, 231 – 245 CrossrefGoogle Scholar

  • [19] Rand M.R., Robinson J.E., Criminal victimization in the United States, 2008 - Statistical Tables. 2011, Report of the Bureau of Justice Statistics No. NCJ-231173. Available at: http://bjs.ojp. usdoj.gov/index.cfm?ty=pbdetail&iid=2218. Google Scholar

  • [20] Moffitt T.E., Caspi A., Rutter M., Silva P.A., Sex differences in antisocial behaviour: conduct disorder, delinquency and violence in the Dunedin longitudinal study. 2001, Cambridge University Press, Cambridge Google Scholar

  • [21] Simpson K., The role of testosterone in aggression. McGill J. Med., 2001, 6, 32-40 Google Scholar

  • [22] Keeler L.A., The differences in sport aggression, life aggression, and life assertion among adult male and female collision, contact, and non-contact sport athletes. J. Sport Behav., 30, 57–76 Google Scholar

  • [23] Al-Ali, M.M., Social anxiety in relation to social skills, aggression, and stress among male and female commercial institute students. Education, 2011, 132, 351–61 Google Scholar

  • [24] Sundberg JP, Roopenian DC, Liu ET, Schofield PN. The Cinderella Effect: Searching for the Best Fit between Mouse Models and Human Diseases. J Invest Dermatol. 2013 Jun 27. doi: 10.1038/ jid.2013.238. [Epub ahead of print] CrossrefGoogle Scholar

  • [25] Pavlov K.A., Chistiakov D.A., Chekhonin V.P., Genetic determinants of aggression and impulsivity in humans. J. Appl. Genet., 2012, 53, 61-82 CrossrefGoogle Scholar

  • [26] Cairns R.B., Aggression from a developmental perspective: genes, environments and interactions. Ciba Found. Symp. 1996, 194, 45–56 Google Scholar

  • [27] Hermans J., Kruk M.R., Lohman A.H., Meelis W., Mos, J., Mostert, P.G., et al., Discriminant analysis of the localization of aggression-inducing electrode placements in the hypothalamus of male rats. Brain Res., 1983, 260, 61–79 Google Scholar

  • [28] . Delville Y., Ferris C.F., Fuler R.W., Koppel G.R.R.W; Melloni Jr, H., Perry K.W., Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J. Neurosci., 1997, 17, 4331–4340 Google Scholar

  • [29] Potegal M., Ferris C.F., Herbert M., Meyerhoff J., Skaredoff L., Attack priming in female Syrian Golden hamsters is associated with a c-fos-coupled process within the corticomedial amygdala. Neuroscience, 1996, 5, 869–880 CrossrefGoogle Scholar

  • [30] Amaral D.G., Bauman M.D., Lavenex P., Mason W.A., Toscano J.E., The expression of social dominance following neonatal lesions of the amygdala or hippocampus in Rhesus monkeys (Macaca mulatta). Behav. Neurosci., 2006, 120, 749–760 Google Scholar

  • [31] Caramaschi D., De Boer S.F., De Vries H., Koolhaas J.M., Development of violence in mice through repeated victory along with changes in prefrontal cortex neurochemistry. Behav. Brain Res., 2008, 189, 263–72 CrossrefGoogle Scholar

  • [32] Kulikova MA, Maluchenko NV, Timofeeva MA, Shlepzova VA, Schegolkova JV, Sysoeva OV, Ivanitsky AM, Tonevitsky AG. Effect of functional catechol-O-methyltransferase Val158Met polymorphism on physical Bull Exp Biol Med. 2008 Jan;145(1):62-4. Google Scholar

  • [33] Gregg T.R., Siegel A., Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2001, 25, 91–140 CrossrefGoogle Scholar

  • [34] Lonstein J.S., Stern J.M., Role of the midbrain periaqueductal gray in maternal nurturance and aggression: c-fos and electrolytic lesion studies in lactating rats. J. Neurosci., 1997, 17, 3364–3378 Google Scholar

  • [35] Stork O., Welzl H., Cremer H., Schachner M., Increased intermale aggression and neuroendocrine response in mice deficient for the neural cell adhesion molecule (NCAM). Eur. J. Neurosci., 1997, 9, 1117–1125 CrossrefGoogle Scholar

  • [36] Lyons W.E., Mamounas L.A., Ricaurte G.A., Coppola V., Reid S.W., Bora S.H., et al., Brain-derived neurotrophic factordeficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc. Natl. Acad. Sci. USA., 1999, 96, 15239–15244] CrossrefGoogle Scholar

  • [37] Wersinger S.R., Ginns E.I., O’Carroll A.M., Lolait S.J., Young W.S., Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol. Psychiatr., 2002, 7, 975–984 Google Scholar

  • [38] Hasen N.S., Gammie S.C., Differential fos activation in virgin and lactating mice in response to an intruder. Physiol. Behav., 2005, 84, 681–695 CrossrefGoogle Scholar

  • [39] Albert D.J., Dyson E.M., Walsh M.L., Wong R., Defensive aggression and testosterone-dependent intermale social aggression are each elicited by food competition. Physiol. Behav., 1988, 43, 21–28 CrossrefGoogle Scholar

  • [40] Holmes A., Murphy D.L., Crawley J.N., Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology (Berl), 2002, 161, 160–167 CrossrefGoogle Scholar

  • [41] Miczek K.A., Fish E.W., De Bold J.F., De Almeida R.M., Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems. Psychopharmacology (Berl), 2002, 163, 434–458 CrossrefGoogle Scholar

  • [42] Garris D.R., Aggression-associated changes in murine olfactory tubercle bioamines. Brain Res., 2003, 963, 150–155 Google Scholar

  • [43] Parmigiani S., Rodgers R.J., Palanza P., Mainardi M., Brain P.F., The inhibitory effects of fluprazine on parental aggression in female mice are dependent upon intruder sex. Physiol. Behav., 1989, 46, 455–459 CrossrefGoogle Scholar

  • [44] Parmigiani S., Palanza P., Fluprazine inhibits intermale attack and infanticide, but not predation, in male mice. Neurosci. Biobehav. R., 1991, 15, 511–513 CrossrefGoogle Scholar

  • [45] Sanchez-Martin E., Fano L., Ahedo J., Cardas J., Brain P.F., Azpíroz A., Relating testosterone levels and free play social behavior in male and female preschool children. Psychoneuroendocrino., 2000, 8, 773–783 CrossrefGoogle Scholar

  • [46] Brown G.L., McGarvey E.L., Shirtcliff E.A., Keller A., Granger D.A., Flavin K., Salivary cortisol, dehydroepiandrosterone, and testosterone interrelationships in healthy young males: a pilot study with implications for studies of aggressive behavior. Psychiatry Res., 2008, 30, 67–76 CrossrefGoogle Scholar

  • [47] Yu Y.Z., Shi J.X., Relationship between levels of testosterone and cortisol in saliva and aggressive behaviors of adolescents. Biomed. Environ. Sci., 2009, 22:44–49 CrossrefGoogle Scholar

  • [48] Chichinadze K.N., Domianidze T.R., Matitaishvili T.T., Chichinadze N.K., Lazarashvili A.G., Possible relation of plasma testosterone level to aggressive behavior of male prisoners. Bull. Exp. Biol. Med., 2010, 149, 7–9 Google Scholar

  • [49] Wilson M., Daly M., Competitiveness, risk-taking, and violence - the young male syndrome. Ethol. Sociobiol., 1985, 6, 59–73 CrossrefGoogle Scholar

  • [50] Archer J., Testosterone and human aggression: An evaluation of the challenge hypothesis. Neurosci. Biobehav. R., 2006, 30, 319–201 CrossrefGoogle Scholar

  • [51] Book A.S., Starzyk K.B., Quinsey V.L., The relationship between testosterone and aggression: a meta-analysis. Aggress. Violent Behav., 2001, 6, 579–599 CrossrefGoogle Scholar

  • [52] Wingfield J.C., Ball G.F., Dufty Jr. A.M., Hegner R.E., Ramenofsky M., Testosterone and aggression in birds. Am. Sci., 1987, 5, 602–608 Google Scholar

  • [53] Muller M.N., Wrangham R.W., Dominance, aggression and testosterone in wild chimpanzees: a test of the ‘challenge hypothesis’. Anim. Behav., 2004, 67, 113–123 CrossrefGoogle Scholar

  • [54] Rothballer A.B., Aggression, defense and neurohumors. UCLA Forum Med. Sci., 1967, 7, 135–170 Google Scholar

  • [55] Owen K., Peters P.J., Bronson F.H., Effects of intracranial implants of testosterone propionate on intermale aggression in the castrated male mouse. Horm. Behav., 1974, 5, 83–92 CrossrefGoogle Scholar

  • [56] Saal F.S., Gandelman R., Svare B., Aggression in male and female mice: evidence for changed neural sensitivity in response to neonatal but not adult androgen exposure. Physiol. Behav., 1976, 17, 53–57 Google Scholar

  • [57] Svare B., Testosterone propionate inhibits maternal aggression in mice. Physiol. Behav., 1980, 24, 435–439 CrossrefGoogle Scholar

  • [58] Albert D.J., Dyson E.M., Walsh M.L., Wong R., Defensive aggression and testosterone-dependent intermale social aggression are each elicited by food competition. Physiol. Behav., 1988, 43, 21–28 CrossrefGoogle Scholar

  • [59] Soma K.K., Scotti M.A., Newman A.E., Charlier T.D., Demas G.E., Novel mechanisms for neuroendocrine regulation of aggression. Front Neuroendocrin., 2008, 29, 476–89 CrossrefGoogle Scholar

  • [60] Chamero P., Marton T.F., Logan D.W., Identification of protein pheromones that promote aggressive behaviour. Nature, 2007, 450, 899–902 Google Scholar

  • [61] Gronek P., Przysiecki P., Nowicki S., Kalak R., Juzwa W., Szalata M., et al., Is G-T substitution in the sequence of CAG repeats within the androgen receptor gene associated with aggressive behaviour in the red fox Vulpes vulpes ? Acta Theriol., 2008, 53, 17-25 CrossrefGoogle Scholar

  • [62] Aluja A., García L.F., Blanch A., Fibla J., Association of androgen receptor gene, CAG and GGN repeat length polymorphism and impulsive-disinhibited personality traits in inmates: the role of short-long haplotype. Psychiatr. Genet., 2011, 21, 229-39 CrossrefGoogle Scholar

  • [63] Lee, J. Harley V.R., The male fight-flight response: a result of SRY regulation of catecholamines? Bioessays. 2012. 34, (6), 454-457 CrossrefGoogle Scholar

  • [64] Derringer J., Krueger R,F., Irons D.E., Iacono W.G., Harsh discipline, childhood sexual assault, and MAOA genotype: An investigation of main and interactive effects on diverse clinical externalizing outcomes. Behav. Genet., 40, 639–648 Google Scholar

  • [65] Miles D.R, Carey G., Genetic and environmental architecture of human aggression. J. Pers. Soc. Psychol., 1997, 72(1), 207–217 CrossrefGoogle Scholar

  • [66] Seroczynski A.D, Bergeman C.S., Coccaro E.F., Etiology of the impulsivity/aggression relationship: Genes or environment? Psychiatry Res., 1999, 86(1). 41–57 CrossrefGoogle Scholar

  • [67] Slutske W.S., The genetics of antisocial behavior. Curr, Psychiatry Rep., 2001, 3(2), 158–162 CrossrefGoogle Scholar

  • [68] Rhee S.H., Waldman I.D., Genetic and environmental influences on antisocial behavior: A meta-analysis of twin and adoption studies. Psychol, Bull., 2002, 128(3), 490–529 CrossrefGoogle Scholar

  • [69] Yeh M.T., Coccaro E.F., Jacobson K.C., Multivariate behavior genetic analyses of aggressive behavior subtypes. Behav Genet., 2010 40(5), 603–617 CrossrefGoogle Scholar

  • [70] Sysoeva O.V., Maluchenko N.V., Timofeeva M.A., Portnova G.V., Kulikova M.A., Tonevitsky A.G., Ivanitsky A.M., Aggression and 5HTT polymorphism in females: study of synchronized swimming and control groups.Int J Psychophysiol., 2009, 72(2),173-8 CrossrefGoogle Scholar

  • [71] Maliuchenko N.V., Sysoeva O.V., Vediakov A.M., Timofeeva M.A., Portanova G.V., et al., Effect of 5HTT genetic polymorphism on aggression in athletes.Zh Vyssh Nerv Deiat Im I P Pavlova. 2007,57(3), 276-81 Google Scholar

  • [72] Kohl C., Riccio O., Grosse J., Zanoletti O., Fournier C., Schmidt M.V., et al., Hippocampal neuroligin-2 overexpression leads to reduced aggression and inhibited novelty reactivity in rats. PLoS One. 2013; 8, e56871 Google Scholar

  • [73] Sandi C., Grosse J., Fantin M., Stress effects on mood and sociability - cell adhesion molecules as molecular targets. Eur. Neuropsychopharm., 2011, 21, S211 CrossrefGoogle Scholar

  • [74] Guillot P.Vr., Roubertoux P.L., Crusio W.E., Hippocampal mossy fiber distributions and intermale aggression in seven inbred mouse strains. Brain Res., 1994, 660, 167–169 Google Scholar

  • [75] Sala M., Caverzasi E., Lazzaretti M., Morandotti N., De Vidovich G., Dorsolateral prefrontal cortex and hippocampus sustain impulsivity and aggressiveness in borderline personality disorder. J. Affect. Disorders, 2011, 131: 417–421 Google Scholar

  • [76] Comai S., Tau M., Gobbi G., The psychopharmacology of aggressive behavior: a translational approach: part 1: neurobiology. J. Clin. Psychopharmacol., 2012, 32: 83–94 CrossrefGoogle Scholar

  • [77] Shih J.C., Grimsby J., Chen K., Zhu Q.S., Structure and promoter organization of the human monoamine oxidase A and B genes. Psychiatry Neurosci., 1993, 18, 25–32 Google Scholar

  • [78] Cases O., Seif I., Grimsby J., Gaspar P., Chen K., Pournin S., et al., Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science, 1995, 268, 1763–1766 Google Scholar

  • [79] Brunner H.G., Nelen M., BreakeWeld X.O., Ropers H.H., van Oost B.A., Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science, 1993, 262, 578–580 Google Scholar

  • [80] Sabol S.Z., Hu S., Hamer D., A functional polymorphism in the monoamine oxidase A gene promoter. Hum. Genet., 103, 273–279 Google Scholar

  • [81] Deckert J., Catalano M., Syagailo Y.V., Bosi M., Okladnova O., Di B.D., et al., Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum. Mol. Genet., 1999, 8, 21–624 Google Scholar

  • [82] Guo G., Ou X-M., Roettger M., Shih J.C., The VNTR 2 repeat in MAOA and delinquent behavior in adolescence and young adulthood: associations and MAOA promoter activity. Eur. J. Hum. Genet., 2008, 16, 626–634 CrossrefGoogle Scholar

  • [83] Denney R.M., Koch H., Craig I.W., Association between monoamine oxidase A activity in human male skin fibroblasts and genotype of the MAOA promoter-associated variable number tandem repeat. Hum. Genet., 1999, 105, 542–551 Google Scholar

  • [84] Caspi A., McClay J., Moffitt T.E., Mill J., Martin J., Craig I.W., et al., Role of genotype in the cycle of violence in maltreated children. Science, 2002, 297, 851–854 Google Scholar

  • [85] Kim-Cohen J., Caspi A., Taylor A., Williams B., Newcombe R., Craig I.W., et al., MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: new evidence and a meta-analysis. Mol. Psychiatry., 2006, 1, 903–913 Google Scholar

  • [86] Philibert R.A., Wernett P., Plume J., Packer H., Brody G.H., Beach S.R., Gene environment interactions with a novel variable Monoamine Oxidase A transcriptional enhancer are associated with antisocial personality disorder. Biol. Psychol., 2011, 36, 366–371 CrossrefGoogle Scholar

  • [87] Márquez C., Poirier G.L., Cordero M.I., Larsen M.H., Groner A., Marquis J., et al., Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression. Transl. Psychiatry, 2013, 3: e216; doi:10.1038/tp.2012.144 CrossrefGoogle Scholar

  • [88] Cordero M I, Poirier G L , Marquez C , Veenit V , Fontana X , Salehi B , Ansermet F , C Sandi1 Evidence for biological roots in the transgenerational transmission of intimate partner violence Translational Psychiatry (2012) 2, e106; doi:10.1038/ tp.2012.32 Published online 24 April 2012 CrossrefGoogle Scholar

  • [89] Grober M.S., Sunobe T., Serial adult sex change involves rapid and reversible changes in forebrain neurochemistry. Neuroreport. 1996, 7, 2945–2949 CrossrefGoogle Scholar

  • [90] Albers H.E., Bamshad M., Role of vasopressin and oxytocin in the control of social behavior in Syrian hamsters (Mesocricetus auratus) Prog. Brain Res., 1998, 119, 395–408 Google Scholar

  • [91] Dantzer R., Vasopressin, gonadal steroids and social recognition. Prog. Brain Res., 1998, 119, 409–414 Google Scholar

  • [92] Godwin J., Sawby R., Warner R.R., Crews D., Grober M.S., Hypothalamic arginine vasotocin mRNA abundance variation across sexes and with sex change in a coral reef fish. Brain Behav. Evol., 2000, 55, 77–84 CrossrefGoogle Scholar

  • [93] Semsar K., Kandel F.L., Godwin J., Manipulations of the AVT system shift social status and related courtship and aggressive behavior in the bluehead wrasse. Horm. Behav., 2001, 40, 21–31 CrossrefGoogle Scholar

  • [94] Wersinger S.R., Kelliher RK, Zufall F, Lolait SJ, O’Carroll AM, Young WS., 3rd., Social motivation is reduced in vasopressin 1b receptor null mice despite normal performance in an olfactory discrimination task. Horm. Behav., 2004, 46, 638–645 Google Scholar

  • [95] Wersinger S.R., Caldwell H. K., Christiansen M., Young W. Scott., 3rd., Disruption of the vasopressin 1b receptor gene impairs the attack component of aggressive behavior in mice. Genes Brain. Behav., 2007, 6, 653–660 Google Scholar

  • [96] Hernando F., Schoots O., Lolait S.J., Burbach J.P., Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology, 2001, 142, 1659–1668 Google Scholar

  • [97] Sysoeva O.V., Kulikova M.A., Maliuchenko N.V., Tonevitskiĭ A.G., Ivanitskiĭ A.M.. Genetic and social factors in developing of aggression. Fiziol. Cheloveka, 2010, 36(1), 48-55 Google Scholar

  • [98] Orwell G ‘The Sporting Spirit. Tribune. — GB, London. — December 1945. Google Scholar

  • [99] Kalina R.M., The profile of sense of positive health and survival abilities indices (subjective assessment) as a diagnostic tool used in health-related training. Arch. Budo, 2012, 8, 179-190 CrossrefGoogle Scholar

  • [100] Rascle O, Coulomb G, Pfister R. Aggression and goal orientations in handball: influence of institutional sport context. Percept Mot Skills. 1998 Jun;86(3 Pt 2):1347-60 Google Scholar

About the article

Received: 2013-06-26

Accepted: 2014-05-07

Published Online: 2014-10-02


Citation Information: Open Life Sciences, Volume 10, Issue 1, ISSN (Online) 2391-5412, DOI: https://doi.org/10.1515/biol-2015-0002.

Export Citation

©2015 Piotr Gronek, et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Juan González-Hernández, Concepción Capilla Díaz, and Manuel Gómez-López
Frontiers in Psychology, 2019, Volume 10

Comments (0)

Please log in or register to comment.
Log in