Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 10, Issue 1

Issues

Volume 10 (2015)

Genetic diversity and population structure of wild pear (Pyrus pyraster (L.) Burgsd.) in Poland

Łukasz Wolko / Jan Bocianowski
  • Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, 60-637 Poznan, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wojciech Antkowiak / Ryszard Słomski
  • Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, 60-637 Poznan, Poland
  • Institute of Human Genetics, Polish Academy of Sciences, 60-493 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-09-22 | DOI: https://doi.org/10.1515/biol-2015-0003

Abstract

In order to provide molecular characteristics of wild pear (P. pyraster) resources, six populations (192 accessions) from different regions of Poland were investigated with 17 SSR loci. Each of the SSR loci used was polymorphic, with a mean of 19.5 alleles per locus and a mean PIC of 0.806. Both the high heterozygosity (Ho = 0.751) and low Fis (0.007) indicated that the wild pear populations maintain a relatively high level of diversity, while the mean Findex of 0.039 and the number of migrants per generation (Nm = 6.996) revealed a high gene flow and weak inter-population differentiation. AMOVA analysis located polymorphisms mainly within populations (96%). Genetic relations between populations did not show correlations with geographical distances. The dispersal influence of gene flow could be the reason of the disrupted relationship within populations and the low interpopulation differentiation. We did not find any evidence to support the hypothesis about influence of interspecies hybridization with pear cultivars on the level of wild pear population diversity.

This article offers supplementary material which is provided at the end of the article.

Keywords: microsatellite; SSR; Pyrus pyraster; wild pear; genetic diversity; population structure

References

  • [1] Toro M., Caballero A., Characterization and conservation of genetic diversity in subdivided populations, Philos. Trans. R. Soc. B Biol. Sci., 2005, 360, 1367–1378 CrossrefGoogle Scholar

  • [2] Ellis J.R., Burke J.M., EST-SSRs as a resource for population genetic analyses, Heredity, 2007, 99, 125–132 CrossrefGoogle Scholar

  • [3] Lazrek F., Roussel V., Ronfort J., Cardinet G., Chardon F., Aouani M.E., et al., 2009. The use of neutral and non-neutral SSRs to analyse the genetic structure of a Tunisian collection of Medicago truncatula lines and to reveal associations with eco-environmental variables, Genetica, 2009, 135, 391–402 CrossrefGoogle Scholar

  • [4] Tian-Ming H., Xue-Sen C., Zheng X., Jiang-Sheng G., Pei-Jun L., Wen L., et al., 2007. Using SSR markers to determine the population genetic structure of wild apricot (Prunus armeniaca L.) in the Ily Valley of West China, Genet. Resour. Crop Evol., 2007, 54, 563–572 Google Scholar

  • [5] Xie W.G., Lu X.F., Zhang X.Q., Huang L.K., Cheng L., Genetic variation and comparison of orchardgrass (Dactylis glomerata L.) cultivars and wild accessions as revealed by SSR markers, Genet. Mol. Res. GMR, 2012, 11, 425–433 CrossrefGoogle Scholar

  • [6] Yamamoto T., Kimura T., Sawamura Y., Manabe T., Kotobuki K., Hayashi T., et al., Simple sequence repeats for genetic analysis in pear, Euphytica, 2002, 124, 129–137 CrossrefGoogle Scholar

  • [7] Yamamoto T., Kimura T., Shoda M., Imai T., Saito T., Sawamura Y., et al., Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears, Theor. Appl. Genet., 2002, 106, 9–18 CrossrefGoogle Scholar

  • [8] Fernández-Fernández F., Harvey N.G., James C.M., Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.), Mol. Ecol. Notes, 2006, 6, 1039–1041 CrossrefGoogle Scholar

  • [9] Kimura T., Shi Y.Z., Shoda M, Kotobuki K, Matsuta N, Hayashi T., et al., Identification of Asian Pear Varieties by SSR Analysis, Breed. Sci., 2002, 52, 115–121 CrossrefGoogle Scholar

  • [10] Yamamoto T., Kimura T., Shoda M., Ban Y., Hayashi T., Matsuta N., Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Mol. Ecol. Notes, 2002, 2, 14–16 CrossrefGoogle Scholar

  • [11] Yamamoto T., Kimura T., Sawamura Y., Kotobuki K., Ban Y., Hayashi T., et al. SSRs isolated from apple can identify polymorphism and genetic diversity in pear, Theor. Appl. Genet., 2001, 102, 865–870 CrossrefGoogle Scholar

  • [12] Pierantoni L., Cho K-H., Shin I-S., Chiodini R., Tartarini S., Dondini L., et al., Characterisation and transferability of apple SSRs to two European pear F1 populations, Theor. Appl. Genet., 2004, 109, 1519–1524 CrossrefGoogle Scholar

  • [13] Pierantoni L., Dondini L., Cho K.H., Shin I.S., Gennari F., Chiodini R., et al., Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map, Tree Genet. Genomes, 2007, 3, 311–317 CrossrefGoogle Scholar

  • [14] Terakami S., Adachi Y., Iketani H., Sato Y., Sawamura Y., Takada N., et al., Genetic mapping of genes for susceptibility to black spot disease in Japanese pears, Genome, 2007, 50, 735–741 CrossrefGoogle Scholar

  • [15] Evans K.M., Govan C.L., Fernández-Fernández F., 2008. A new gene for resistance to Dysaphis pyri in pear and identification of flanking microsatellite markers, Genome, 2008, 51, 1026–1031 CrossrefGoogle Scholar

  • [16] Volk G.M., Richards Ch.M., Henk A.D., Reilley A.A., Diversity of Wild Pyrus communis Based on Microsatellite Analyses, J. Am. Soc. Hortic. Sci., 2006, 131, 408–417 Google Scholar

  • [17] Bao L., Chen K., Zhang D., Cao Y., Yamamoto T., Teng Y. Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers, Genet. Resour. Crop Evol., 2007, 54, 959–971 Google Scholar

  • [18] Wolko Ł., Antkowiak W., Lenartowicz E., Bocianowski J., Genetic diversity of European pear cultivars (Pyrus communis L.) and wild pear (Pyrus pyraster (L.) Burgsd.) inferred from microsatellite markers analysis. Genet. Resour. Crop Evol., 2010, 57, 801–806 Google Scholar

  • [19] Yakovin N.A., Fesenko I.A., Isachkin A.V., Karlov G.I., Polymorphism of microsatellite loci in cultivars and species of pear (Pyrus L.), Russ. J. Genet., 2011, 47, 564–570 Google Scholar

  • [20] Cao Y., Tian L., Gao Y., Liu F., Genetic diversity of cultivated and wild Ussurian Pear (Pyrus ussuriensis Maxim.) in China evaluated with M13-tailed SSR markers. Genet. Resour. Crop Evol., 2012, 59, 9–17 Google Scholar

  • [21] Sehic J., Garkava-Gustavsson L., Fernández-Fernández F., Nybom H., Genetic diversity in a collection of European pear (Pyrus communis) cultivars determined with SSR markers chosen by ECPGR, Sci. Hortic., 2012, 145, 39–45 CrossrefGoogle Scholar

  • [22] Terpo A., Studies on taxonomy jand grouping of Pyrus species, Feddes Repert., 1985, 96, 73–87. Google Scholar

  • [23] Oliveira C.M., Mota M., Monte-Corvo L., Goulao L., Silva D.M., Molecular typing of Pyrus based on RAPD markers, Sci. Hortic., 1999, 79, 163–174 CrossrefGoogle Scholar

  • [24] Potter D., Eriksson T., Evans R.C., Oh S., Smedmark J.E.E., et al., Phylogeny and classification of Rosaceae, Plant Syst. Evol., 2007, 266, 5–43 CrossrefGoogle Scholar

  • [25] Zheng, X., Hu, C., Spooner, D., Liu, J., Cao J., Teng Y., Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae), BMC Evol. Biol., 2011, 11, 255 Google Scholar

  • [26] Paganová V., The evaluation of height growth of wild pear (Pyrus pyraster) progenies from different regions of Slovak republic, J. For. Sci. - UZPI Czech Repub., 2001, 47, 464–472 Google Scholar

  • [27] Paganová V., Taxonomic reliability of leaf and fruit morphological characteristics of the Pyrus L. taxa in Slovakia, Horticul Sci Prague, 2003, 30, 98–107 Google Scholar

  • [28] Paganová V., Wild pear Pyrus pyraster L. Burgsd. requirements on environmental conditions, Hortic. Sci., 2003, 22, 225–241 Google Scholar

  • [29] Paganová V., The occurrence and morphological characteristics of the wild pear lower taxa in Slovakia, Hortic. Sci., 2009, 36, 1–13. Google Scholar

  • [30] Antkowiak W., Cedro A., Prajs B., Wolko Ł., Michalak M., Success of wild pear Pyrus pyraster (L.) Burgsd. in colonization of steep sunny slopes : an interdisciplinary study in the Bielinek Reserve (NW Poland), Pol. J. Ecol., 2012, 60, 57–78 Google Scholar

  • [31] Hoffmann H., Zur Verbreitung und Ökologie der Wildbirne (Pyrus communis L.) in Süd-Niedersachsen und Nordhessen sowie ihrer Abgrenzung von verwilderten Kulturbirnen (Pyrus domestica Med.), Mitt Dtsch. Dendrol Ges, 1993, 81, 71–94 Google Scholar

  • [32] Wagner I., Zusammenstellung morphologischer Merkmale und ihrer Ausprägungen zur Unterscheidung von Wild- und Kulturformen des Apfel - (Malus) und des Birnbaumes (Pyrus), Mitt Dtsch. Dendrol Ges, 1996, 82, 87–108 Google Scholar

  • [33] Dostálek I., Pyrus x amphigenea, seine Taxonomie und Nomenklatur. Folia Geobot Phytotaxon, 1989, 24, 103–108 Google Scholar

  • [34] Dolatowski J.N.J., Podyma W., Szymanska M., Zych M., Molecular studies on the variability of Polish semi-wild pears Pyrus using AFLP, J. Fruit Ornam. Plant Res., 2004, 12, 331–337 Google Scholar

  • [35] Halász J., Hegedûs A., Pedryc A., Review of the molecular background of self-incompatibility in rosaceous fruit trees, J. Hortic. Sci., 2006, 12, 7–18 Google Scholar

  • [36] Holderegger R., Häner R., Csencsics D., Angelone S., Hoebee S.E., S-allele diversity suggests no mate limitation in small populations of a self-incompatible plant, Evol. Int. J. Org. Evol., 2008, 62, 2922–2928 CrossrefGoogle Scholar

  • [37] Wolko Ł., Antkowiak W., Sips M., Słomski R., Self-incompatibility alleles in Polish wild pear (Pyrus pyraster (L.) Burgsd.): a preliminary analysis, J. Appl. Genet., 2010, 51, 33–35 CrossrefGoogle Scholar

  • [38] Hoebee S.E., Angelone S., Csencsics D., Määttänen K., Holderegger R., Diversity of S-Alleles and Mate Availability in 3 Populations of Self-Incompatible Wild Pear (Pyrus pyraster), J. Hered., 2012, 103, 260–267 CrossrefGoogle Scholar

  • [39] Torres A.M., Weeden N.F., Martín A., Linkage among isozyme, RFLP and RAPD markers in Vicia faba, Theor. Appl. Genet., 1993, 85, 937–945 CrossrefGoogle Scholar

  • [40] Nei M., Chesser R.K., Estimation of fixation indices and gene diversities. Ann. Hum. Genet., 1983, 47, 253–259 CrossrefGoogle Scholar

  • [41] Weir B.S., Cockerham C.C., Estimating F-Statistics for the Analysis of Population Structure, Evolution, 1984, 38, 1358 CrossrefGoogle Scholar

  • [42] Anderson J.A., Churchill G.A., Autrique J.E., Tanksley S.D., Sorrells M.E., Optimizing parental selection for genetic linkage maps, Genome Natl. Res. Counc. Can., 1993, 36, 181–186 Google Scholar

  • [43] Peakall R., Smouse P.E., GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, 6, 288–295 CrossrefGoogle Scholar

  • [44] Falconer D.S., Mackay T.F.C., Introduction to quantitative genetics, Longman, Essex, England. 1996 Google Scholar

  • [45] Irzykowska L., Weber Z., Bocianowski J., Comparison of Claviceps purpurea populations originated from experimental plots or fields of rye, Cent. Eur. J. Biol., 2012, 7, 839–849 Google Scholar

  • [46] Nei M., Tajima F., Tateno Y., Accuracy of estimated phylogenetic trees from molecular data, J. Mol. Evol., 1983, 19, 153–170 CrossrefGoogle Scholar

  • [47] Bowcock A.M., Ruiz-Linares A., Tomfohrde J., Minch E., Kidd J.R., et al., High resolution of human evolutionary trees with polymorphic microsatellites, Nature, 1994, 368, 455–457 CrossrefGoogle Scholar

  • [48] Evanno G., Regnaut S., Goudet J., Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol. Ecol., 2005, 14, 2611–2620 CrossrefGoogle Scholar

  • [49] Lenormand T., Gene flow and the limits to natural selection, Trends Ecol. Evol., 2002, 17, 183–189 CrossrefGoogle Scholar

  • [50] Burczyk J., DiFazio S.P., Adams W.T., Gene flow in forest trees: how far do genes really travel, For. Genet., 2004, 11, 179–192 Google Scholar

  • [51] Konuma A., Tsumura Y., Lee C.T., Lee S.L., Okuda T., Estimation of gene flow in the tropical-rainforest tree Neobalanocarpus heimii (Dipterocarpaceae), inferred from paternity analysis, Mol. Ecol., 2000, 9, 1843–1852 CrossrefGoogle Scholar

  • [52] Godoy J.A., Jordano P., Seed dispersal by animals: exact identification of source trees with endocarp DNA microsatellites, Mol. Ecol., 2001, 10, 2275–2283 CrossrefGoogle Scholar

  • [53] Hardesty B.D., Dick C.W., Kremer A., Hubbell S., Bermingham E., Spatial genetic structure of Simarouba amara Aubl. (Simaroubaceae), a dioecious, animal-dispersed Neotropical tree, on Barro Colorado Island, Panama, Heredity, 2005, 95, 290–297 CrossrefGoogle Scholar

  • [54] López-Bao J.V., González-Varo J.P., Frugivory and Spatial Patterns of Seed Deposition by Carnivorous Mammals in Anthropogenic Landscapes: A Multi-Scale Approach. PLoS ONE, 2011, 6, e14569Google Scholar

About the article

Received: 2013-11-12

Accepted: 2014-05-11

Published Online: 2014-09-22


Citation Information: Open Life Sciences, Volume 10, Issue 1, ISSN (Online) 2391-5412, DOI: https://doi.org/10.1515/biol-2015-0003.

Export Citation

©2015 Łukasz Wolko, et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Katarzyna Sosnowska, Teresa Cegielska-Taras, Alina Liersch, Wojciech M. Karłowski, Jan Bocianowski, Laurencja Szała, Katarzyna Mikołajczyk, and Wiesława Popławska
Euphytica, 2017, Volume 213, Number 9
[2]
Nicoletta Ferradini, Hovirag Lancioni, Renzo Torricelli, Luigi Russi, Isabella Dalla Ragione, Irene Cardinali, Gianpiero Marconi, Mauro Gramaccia, Luciano Concezzi, Alessandro Achilli, Fabio Veronesi, and Emidio Albertini
Frontiers in Plant Science, 2017, Volume 8

Comments (0)

Please log in or register to comment.
Log in