Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year

IMPACT FACTOR 2017: 0.764
5-year IMPACT FACTOR: 0.787

CiteScore 2017: 0.88

SCImago Journal Rank (SJR) 2017: 0.271
Source Normalized Impact per Paper (SNIP) 2017: 0.545

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 10, Issue 1


Volume 10 (2015)

Isolation and preliminary characterization of cyanobacteria strains from freshwaters of Greece

Spyros Gkelis
  • Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Macedonia, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pablo Fernández Tussy
  • Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Macedonia, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nikos Zaoutsos
  • Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Macedonia, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-20 | DOI: https://doi.org/10.1515/biol-2015-0006


Cyanobacterial harmful algal blooms (or CyanoHABs) represent one of the most conspicuous waterborne microbial hazards. The characterization of the bloom communities remains problematic because the cyanobacterial taxonomy of certain genera has not yet been resolved. In this study, 29 planktic and benthic cyanobacterial strains were isolated from freshwaters located in Greece. The strains were assigned to the genera Chroococcus, Microcystis, Synechococcus, Jaaginema, Limnothrix, Pseudanabaena, Anabaena, and Calothrix and screened for the production of the cyanotoxins microcystins (MCs), cylindrospermopsins (CYNs), and saxitoxins (STXs) using molecular (PCR amplification of seven genes implicated in cyanotoxin biosynthesis) and immunological (ELISA) methods. This study presents, for the first time, a cyanobacteria culture collection from Greece, thus providing missing study material for the understanding of bloom formation and cyanotoxin production in the Mediterranean and for the polyphasic characterization of important components of the phytoplankton. The combined use of molecular and immunochemical methods allowed the identification of MC producing strains, but further data are needed for CYNand STX-producing cyanobacteria. The high percentage of MC-producing Microcystis strains in the urban Lakes Kastoria and Pamvotis, frequently used for agriculture irrigation, fishing and recreation, highlights the potential risk for human health.

Keywords: Microcystis; Anabaena; Limnothrix; Calothrix; cyanotoxins; molecular detection; lakes; ELISA


  • [1] Cook C.M., Vardaka E., Lanaras T., Toxic cyanobacteria in Greek freshwaters, 1987-2000: Occurrence, toxicity and impacts in the Mediterranean region., Acta Hyrdoch. Hydrob. 2004, 32, 107-124 Google Scholar

  • [2] Paerl H.W., Hall N.S., Calandrino E.S., Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change, Sci. Total Environ., 2011, 409, 1739-1745 Google Scholar

  • [3] Paerl H.W., Otten G.T., Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls, Microb. Ecol., 2013, 65, 995-1010 Google Scholar

  • [4] Vardaka E., Moustaka-Gouni M., Cook C.M., Lanaras T., Cyanobacterial blooms and water quality in Greek waterbodies. J. Appl. Phycol., 2005, 17, 391-401 CrossrefGoogle Scholar

  • [5] Gkelis S., Zaoutsos N., Cyanotoxin occurrence and potentially toxin producing cyanobacteria in freshwaters of Greece: a multi-disciplinary approach, Toxicon, 2014, 78, 1-9 CrossrefGoogle Scholar

  • [6] Moustaka-Gouni M., Vardaka E., Michaloudi E., Kormas K.A., Tryfon E., Mihalatou H., Gkelis S., Lanaras T. , Plankton food web structure in a eutrophic polymictic lake with a history in toxic cyanobacterial blooms, Limnol. Oceanogr., 2006, 51, 715-727 Google Scholar

  • [7] Moustaka-Gouni M., Kormas K.A., Vardaka E., Katsiapi M., Gkelis S., Raphidiopsis mediterranea Skuja represents non-heterocytous life-cycle stages of Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju in Lake Kastoria (Greece), its type locality: Evidence by morphological and phylogenetic analysis, Harmful Algae, 2009, 8, 864-872 CrossrefGoogle Scholar

  • [8] Rajaniemi P., Hrouzek P., Kaštovská K., Willame R., Rantala A., Hoffmann L., Komarek J., Sivonen K., Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria), Int. J. Syst. Evol. Micr., 2005, 55, 11-26 CrossrefGoogle Scholar

  • [9] Willame R., Boutte C., Grubisic S., Wilmotte A., Komárek J., Hoffmann L., Morphological and molecular characterization of planktonic cyanobacteria from Belgium and Luxemburg., J. Phycol., 2006, 42, 1312-1332 CrossrefGoogle Scholar

  • [10] Ballot A., Fastner J., Wiedner C., Paralytic shellfish poisoning toxin-producing cyanobacterium Aphanizomenon gracile in northeast Germany, Appl. Environ. Microbiol., 2010, 76, 1173-1180. Google Scholar

  • [11] Kling H.J., Laughinghouse H.D., Šmarda J., Komárek J., Acreman J., Bruun K., Watson S.B., Chen F., A new red colonial Pseudanabaena (Cyanoprokaryota, Oscillatoriales) from North American large lakes, Fottea, 2012, 12, 327-339 CrossrefGoogle Scholar

  • [12] Anagnostidis K., Komárek J., Modern approach to the classification system of cyanophytes. 1- Introduction, Arch. Hydrobiol., 1985, 71, 291-302 Google Scholar

  • [13] Anagnostidis K. & Komárek J., Modern approach to the classification system of cyanophytes. 3- Oscillatoriales, Arch. Hydrobiol., 1988, 80, 327-472 Google Scholar

  • [14] Komárek J., Anagnostidis K., Modern approach to the classification system of cyanophytes. 2- Chroococales. Arch. Hydrobiol., 1986, 73, 157-226 Google Scholar

  • [15] Komárek J., Anagnostidis K., Modern approach to the classification-system of cyanophytes 4 - Nostocales. Arch. Hydrobiol., 1989, 82: 247-345 Google Scholar

  • [16] Castenholz R.W., Oxygenic photosynthetic bacteria. In: Boone D.R. & R. W. Castenholz (Eds), Bergey’s Manual of Systematic Bacteriology, vol. 1, p. 474-600, Springer-Verlag, New York, 2001 Google Scholar

  • [17] Komárek J., Mareš J., An update to modern taxonomy (2011) of freshwater planktic heterocytous cyanobacteria, Hydrobiologia, 2012, 698, 327-351 Google Scholar

  • [18] Gkelis S., Rajaniemi P., Vardaka E., Moustaka-Gouni M., Lanaras T., Sivonen K., Limnothrix redekei (Van Goor) Meffert (cyanobacteria) strains from Lake Kastoria form a separate phylogenetic group, Microb. Ecol., 2005, 49, 176-182 Google Scholar

  • [19] Gkelis S., Harjunpää V., Lanaras T., Sivonen K., Diversity of hepatotoxic microcystins and bioactive anabaenopeptins in cyanobacterial blooms from Greek freshwaters, Environ. Toxicol., 2005, 20, 249-256 CrossrefGoogle Scholar

  • [20] Rippka R., Isolation and purification of cyanobacteria, Method. Enzymol., 1988, 167, 3-27 Google Scholar

  • [21] de Chazal N.M., Smaglinski S., Smith G.D., Methods involving light variation of cyanobacteria: Characterization of isolates from central Australia, Appl. Environ. Microb., 1992, 58, 3561-3566 Google Scholar

  • [22] Dotsika E., Poutoukis D., Tzavidopoulosa I., Maniatis Y., Ignatiadou D., Raco B., A natron source at Pikrolimni Lake in Greece? Geochemical evidence, J. Geochem. Explor., 2009, 103, 133-143 Google Scholar

  • [23] Komárek J., Anagnostidis K., Cyanoprokaryota. 1. Teil: Chroococcales. Süßwasserflora von Mitteleuropa Band 19/1, p. 270-323, Spektrum Akademischer Verlag, 1999 Google Scholar

  • [24] Komárek J., Anagnostidis K., Cyanoprokaryota. 2. Teil: Oscillatoriales. Süßwasserflora von Mitteleuropa Band 19/2, p. 1-759, Spektrum Akademischer Verlag, 2005 Google Scholar

  • [25] Atashpaz S., Khani S., Barzegari A., Barar J., Vahed S.Z., Azarbaijani, R., Omidi, Y., A robust universal method for extraction of genomic DNA from bacterial species. Microbiology, 2010, 79, 538-542 CrossrefGoogle Scholar

  • [26] Vasconcelos V., Martins A., Vale M., Antunes A., Azevedo J., Welker M., Lopez O., Montejano G., First report on the occurrence of microcystins in planktonic cyanobacteria from Central Mexico, Toxicon, 2010, 56, 425-431 CrossrefGoogle Scholar

  • [27] Tryfon E., Moustaka-Gouni M., Nikolaidis G., Planktic cyanophytes and their ecology in the shallow Lake Mikri Prespa, Greece, Nord. J. Bot., 1997, 17, 439-448 CrossrefGoogle Scholar

  • [28] Mur L.R., Skulberg O.M., Utkilen H., Cyanobacteria in the environment, In: I Chorus and J Bartram (Eds) Toxic Cyanobacteria in Water. E & FN Spon, London, UK, pp 41-112, 1999 Google Scholar

  • [29] Nonneman D., Zimba P., A PCR-based test to assess the potential for microcystin occurrence in channel catfish production ponds, J. Phycol., 2002, 38, 230-234 CrossrefGoogle Scholar

  • [30] Tillett D., Dittmann E., Erhard M., Döhren H.V., Börner T., Neilan B.A., Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide polyketide synthetase system, Chem Biol, 2000. 7. 753-764 CrossrefGoogle Scholar

  • [31] Ouahid Y., Perez-Silva G., Del Campo F.F., Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification of specific microcystin synthetase gene regions, Environ. Toxicol., 2005, 20, 235-242 CrossrefGoogle Scholar

  • [32] Tillett D., Parker D.L., Neilan B.A., Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (Phycocyanin Intergenic Spacer) phylogenies, Appl. Environ. Microbiol., 2001, 67, 2810-2818 Google Scholar

  • [33] Jungblut A.D., Neilan B.A., Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria, Arch. Microbiol., 2006, 185, 107-114 Google Scholar

  • [34] Sivonen K, Jones G., Cyanobacterial toxins. In: I Chorus and J Bartram (Eds) Toxic Cyanobacteria in Water. E & FN Spon, London, UK, pp 113-153, 1999 Google Scholar

  • [35] Frazão B., Martins R., Vasconcelos V., Are Known Cyanotoxins Involved in the Toxicity of Picoplanktonic and Filamentous North Atlantic Marine Cyanobacteria? Mar. Drugs, 2010, 8, 1908-1919 CrossrefGoogle Scholar

  • [36] Vareli K., Zarali E., Zacharioudakis G.S.A., Vagenas G., Varelis V., Pilidis G., Briasoulis E., Sainis I., Microcystin producing cyanobacterial communities in Amvrakikos Gulf (Mediterranean Sea, NW Greece) and toxin accumulation in mussels (Mytilus galloprovincialis), Harmful Algae, 2012, 15, 109-118 CrossrefGoogle Scholar

  • [37] Mihali, T.K., Kellmann, R., Muenchhoff, J., Barrow K.D., Neilan B.A., Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis, Appl. Environ. Microbiol., 2008, 74, 716-722 CrossrefGoogle Scholar

  • [38] Wood S.A., Rasmussen J.P., Holland P.T., Campbell R., Crowe A.L.M., First report of the cyanotoxin anatoxin-a from Aphanizomenon issatschenkoi (Cyanobacteria), J. Phycol., 2007, 43, 356-365 CrossrefGoogle Scholar

  • [39] Ballot, A., Ramm, J., Rundberget, T., Kaplan-Levy, R.N., Hadas, O., Sukenik, A., Wiedner C., Occurrence of non-cylindrospermopsin- producing Aphanizomenon ovalisporum and Anabaena bergii in Lake Kinneret (Israel), J. Plankton Res., 2011, 33, 1736-1746 CrossrefGoogle Scholar

  • [40] Stücken, A., Jakobsen, K.S., The cylindrospermopsin gene cluster of Aphanizomenon sp. strain 10E6: organization and recombination, Microbiology+, 2010, 156, 2438–2451 Google Scholar

  • [41] Mazmouz R., Chapuis-Hugon F., Mann S., Pichon V., Méjean A., Ploux O., Biosynthesis of cylindrospermopsin and 7-epicylindrospermopsin in Oscillatoria sp. strain PCC 6506: identification of the cyr gene cluster and toxin analysis, Appl. Environ. Microbiol., 2010, 67, 4943–4949 Google Scholar

  • [42] Schembri M., Neilan B., Saint C., Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii, Environ.Toxicol., 2001, 16, 413-421 CrossrefGoogle Scholar

  • [43] Spoof L., Berg K.A., Rapala J., Laht, K., Lepisto L., Metcalf J.S., Codd G.A., Meriluoto J., First observation of cylindrospermopsin in Anabaena lapponica isolated from the Boreal Environment (Finland), Environ. Toxicol., 2006, 21, 552-560 CrossrefGoogle Scholar

  • [44] Kellmann R., Mihali T.K., Jeon Y.J., Pickford R., Pomati F., Neilan B.A., Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria, Appl. Environ. Microb., 2008, 74, 4044-4053 CrossrefGoogle Scholar

  • [45] Dittmann E., Fewer D.P., Neilan B.A, Cyanobacterial toxins: biosynthetic routes and evolutionary routes, FEMS Microbiol. Rev., 2013, 37, 23-43 CrossrefGoogle Scholar

  • [46] Hisbergues M., Christiansen G., Rouhiainen L., Sivonen K., Borner T., PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera, Arch. Microbiol., 2003, 180, 402-410 Google Scholar

  • [47] Fergusson K.M., Saint C.P, Multiplex PCR assay for Cylindrospermopsis raciborskii and cylindrospermopsin-producing cyanobacteria, Environ. Toxicol., 2003, 18, 120-125 CrossrefGoogle Scholar

About the article

Received: 2014-01-28

Accepted: 2014-08-21

Published Online: 2014-11-20

Citation Information: Open Life Sciences, Volume 10, Issue 1, ISSN (Online) 2391-5412, DOI: https://doi.org/10.1515/biol-2015-0006.

Export Citation

©2015 Spyros Gkelis et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Spyros Gkelis, Iordanis Ourailidis, Manthos Panou, and Nikos Pappas
Biodiversity Data Journal, 2016, Volume 4, Page e10084

Comments (0)

Please log in or register to comment.
Log in